Skip to main content
Log in

Comprehensive study of hydrothermally grown ZnO nanowires

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A hydrothermal procedure has been implemented to grow single-crystal ZnO nanowires (NWs) on sol–gel deposited seed layers. The main characteristics (diameter, length, and aspect ratio) of derived NWs have been studied by scanning electron microscopy in relation to morphological and structural properties of the ZnO films (mean grain size, surface coverage rate, and texture coefficient) and growth process parameters (growth duration and multi-growth procedure). It is shown how suitable combinations arising from the influence of the seed layer properties, growths of various durations, and implementation of a multi-growth process enable to finely tune the NW characteristics in a large range of values, i.e., a diameter, length, and aspect ratio varying in the 30–225 nm, 1.0–9.0 µm, and 30–50 ranges, respectively. On the basis of investigated experimental conditions, a simple model is developed that suitably describes the NW crystal growth as a function of the seed layer properties and growth duration. According to this model, lateral and longitudinal growth rates of around 0.01 nm/min and 25–30 nm/min, respectively, are extracted from experimental data and a minimal NW diameter of around 20 nm is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:1–22. doi:10.1155/2012/624520

    Google Scholar 

  2. Ternon C, Serre P, Rey G et al (2013) High aspect ratio semiconducting nanostructure random networks: highly versatile materials for multiple applications. Phys Status Solidi Rapid Res Lett 7:919–923. doi:10.1002/pssr.201308047

    Article  Google Scholar 

  3. Serre P, Ternon C, Stambouli V et al (2013) Fabrication of silicon nanowire networks for biological sensing. Sensors Actuators B Chem 182:390–395. doi:10.1016/j.snb.2013.03.022

    Article  Google Scholar 

  4. Serre P, Mongillo M, Periwal P et al (2015) Percolating silicon nanowire networks with highly reproducible electrical properties. Nanotechnology 26:015201. doi:10.1088/0957-4484/26/1/015201

    Article  Google Scholar 

  5. Serre P, Stambouli V, Weidenhaupt M et al (2015) Silicon nanonets for biological sensing applications with enhanced optical detection ability. Biosens Bioelectron 68:336–342. doi:10.1016/j.bios.2015.01.012

    Article  Google Scholar 

  6. Weiss F, Audier M, Bartasyte A et al (2009) Multifunctional oxide nanostructures by metal-organic chemical vapor deposition (MOCVD). Pure Appl Chem 81:1523–1534. doi:10.1351/PAC-CON-08-08-10

    Article  Google Scholar 

  7. Ternon C, Rey G, Labeau M et al (2009) Growth of ZnO nanowires by MOCVD: fundamental role of the substrate. ECS Trans 25(8):437–443

    Article  Google Scholar 

  8. Song J, Lim S (2007) Effect of seed layer on the growth of ZnO nanorods. J Phys Chem C 111:596–600. doi:10.1021/jp0655017

    Article  Google Scholar 

  9. Liu J, She J, Deng S et al (2008) Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. J Phys Chem C 112:11685–11690. doi:10.1021/jp8015563

    Article  Google Scholar 

  10. Demes T, Ternon C, Riassetto D et al (2016) New insights in the structural and morphological properties of sol–gel deposited ZnO multilayer films. J Phys Chem Solids 95:43–55. doi:10.1016/j.jpcs.2016.03.017

    Article  Google Scholar 

  11. Xu C, Shin P, Cao L, Gao D (2010) Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C 114:125–129. doi:10.1021/jp9085415

    Article  Google Scholar 

  12. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098. doi:10.1007/s12274-011-0160-7

    Article  Google Scholar 

  13. Qiu J, Li X, Zhuge F et al (2010) Solution-derived 40 µm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology 21:195602. doi:10.1088/0957-4484/21/19/195602

    Article  Google Scholar 

  14. Feng Y, Zhang M, Guo M, Wang X (2010) Studies on the PEG-assisted hydrothermal synthesis and growth mechanism of ZnO microrod and mesoporous microsphere arrays on the substrate. Cryst Growth Des 10:1500–1507. doi:10.1021/cg900327v

    Article  Google Scholar 

  15. Wu W, Hu G, Cui S et al (2008) Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route. Cryst Growth Des 8(11):4014–4020

    Article  Google Scholar 

  16. Baxter JB, Walker AM, Van Ommering K, Aydil ES (2006) Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17:S304–S312. doi:10.1088/0957-4484/17/11/S13

    Article  Google Scholar 

  17. Bai S-N, Wu S-C (2011) Synthesis of ZnO nanowires by the hydrothermal method, using sol–gel prepared ZnO seed films. J Mater Sci Mater Electron 22:339–344. doi:10.1007/s10854-010-0139-2

    Article  Google Scholar 

  18. Chen S-W, Wu J-M (2011) Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater 59:841–847. doi:10.1016/j.actamat.2010.09.070

    Article  Google Scholar 

  19. Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA (2011) The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86:101–105. doi:10.1016/j.vacuum.2011.04.025

    Article  Google Scholar 

  20. Guo M, Diao P, Cai S (2005) Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl Surf Sci 249:71–75. doi:10.1016/j.apsusc.2004.11.053

    Article  Google Scholar 

  21. Huang J-S, Lin C-F (2008) Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. J Appl Phys 103:014304. doi:10.1063/1.2828172

    Article  Google Scholar 

  22. Hung C-H, Whang W-T (2003) A novel low-temperature growth and characterization of single crystal ZnO nanorods. Mater Chem Phys 82:705–710. doi:10.1016/S0254-0584(03)00331-6

    Article  Google Scholar 

  23. Ji L-W, Peng S-M, Wu J-S et al (2009) Effect of seed layer on the growth of well-aligned ZnO nanowires. J Phys Chem Solids 70:1359–1362. doi:10.1016/j.jpcs.2009.07.029

    Article  Google Scholar 

  24. Kenanakis G, Vernardou D, Koudoumas E, Katsarakis N (2009) Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter. J Cryst Growth 311:4799–4804. doi:10.1016/j.jcrysgro.2009.09.026

    Article  Google Scholar 

  25. Solís-Pomar F, Martínez E, Meléndrez MF, Pérez-Tijerina E (2011) Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Res Lett 6:524. doi:10.1186/1556-276X-6-524

    Article  Google Scholar 

  26. Tak Y, Yong K (2005) Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B 109:19263–19269. doi:10.1021/jp0538767

    Article  Google Scholar 

  27. Wu W-Y, Yeh C-C, Ting J-M (2009) Effects of seed layer characteristics on the synthesis of ZnO nanowires. J Am Ceram Soc 92:2718–2723. doi:10.1111/j.1551-2916.2009.03022.x

    Article  Google Scholar 

  28. Kitazawa N, Aono M, Watanabe Y (2014) Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol–gel derived ZnO thin films. J Phys Chem Solids 75:1194–1200. doi:10.1016/j.jpcs.2014.06.013

    Article  Google Scholar 

  29. Guillemin S, Consonni V, Appert E et al (2012) Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires. J Phys Chem C 116:25106–25111. doi:10.1021/jp308643w

    Article  Google Scholar 

  30. Boercker JE, Schmidt JB, Aydil ES (2009) Transport limited growth of zinc oxide nanowires. Cryst Growth Des 9:2783–2789. doi:10.1021/cg900021u

    Article  Google Scholar 

  31. McPeak KM, Baxter JB (2009) ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor. Cryst Growth Des 9:4538–4545. doi:10.1021/cg900551f

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (T. Demes) thanks the French government for funding. The authors thank the CMTC platform of Grenoble INP for their technical assistance in SEM characterizations. This project has received funding from the European Horizon 2020 Program under Grant agreement 688329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Ternon.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demes, T., Ternon, C., Riassetto, D. et al. Comprehensive study of hydrothermally grown ZnO nanowires. J Mater Sci 51, 10652–10661 (2016). https://doi.org/10.1007/s10853-016-0287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0287-8

Keywords

Navigation