Skip to main content
Log in

In situ monitoring and ex situ TEM analyses of spinel (MgAl\(_2\)O\(_4\)) growth between (111)-oriented periclase (MgO) substrates and Al\(_2\)O\(_3\) thin films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the temperature-dependent onset and subsequent reaction kinetics of spinel (MgAl\(_2\)O\(_4\)) interlayer growth in situ at T = 800–1000 \(^{\circ }\)C in air by means of energy-dispersive as well as wavelength-dispersive synchrotron X-ray diffraction. We observed growth using a diffusion–reaction couple setup in which (111)-oriented periclase (MgO) single-crystal substrates reacted with initially amorphous Al\(_2\)O\(_3\) thin films deposited via pulsed laser ablation. Microstructures and microtextures of the nanoscale reaction bands were analyzed ex situ using focused ion beam (FIB)-assisted transmission electron microscopy (TEM). Reaction bands grew topotactically into the substrates with the orientation relation (111) periclase || (111) spinel and 〈110〉 periclase || 〈110〉 spinel. We inferred temperature-dependent diffusion-controlled, mixed, and interface-controlled reaction kinetics from the increase of the integral intensity of the 111 spinel reflection during the in situ experiments. In case spinel formed, a porous layer at the periclase/spinel interface was found using TEM, displaying the negative reaction volume at this phase boundary. Results are compared with complementary experiments in which spinel growth was monitored using (0001)-oriented corundum (\(\upalpha \)-Al\(_2\)O\(_3\), sapphire) substrates that reacted with MgO thin films [1]. The onset of spinel growth was observed at lower temperatures using periclase substrates, and an offset of about 100 K resulted in similar reaction kinetics. The positive reaction volume at the corundum/spinel interface was displayed by bend contours in TEM micrographs. Combined results suggest that the negative reaction volume at the periclase/spinel phase boundary has a crucial effect on the onset of spinel growth and subsequent reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Notes

  1. Escape peaks occur in EDDI spectra due to fluorescence in the Ge detector crystal, and they appear at a position –9.9 keV from the Bragg peak they are associated with [41].

References

  1. Götze LC, Abart R, Milke R, Schorr S, Zizak I, Dohmen R, Wirth R (2014) Growth of magnesio-aluminate spinel in thin-film geometry: in situ monitoring using synchrotron X-ray diffraction and thermodynamic model. Phys Chem Minerals. doi:10.1007/s00269-014-0682-0

  2. Hesse D (1987) Formation of ceramic thin films by solid-state interface reactions. J Vac Sci Technol A. doi 10(1116/1):574556

    Google Scholar 

  3. Li C, Han X, Cheng F, Hu Y, Chen C, Chen J (2015) Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat Commun. doi:10.1038/ncomms8345

  4. Best MG (2003) Igneous and metamorphic petrology. Blackwell Science Ltd, Oxford

    Google Scholar 

  5. Navias L (1961) Preparation and properties of spinel made by vapor transport and diffusion in the system MgO-Al\(_2\)O\(_3\). J Am Ceram Soc 44:434–446

    Article  Google Scholar 

  6. Whitney WP II, Stubican VS (1971) Interdiffusion Studies in the System MgO-Al\(_2\)O\(_3\). J Phys Chem Solids 32:305–312

    Article  Google Scholar 

  7. Zhang P, Debroy T, Seetharaman S (1996) Interdiffusion in the MgO-Al\(_2\)O\(_3\) spinel with or without some dopants. Metall Mater Trans 27A:2105–2114

    Article  Google Scholar 

  8. Watson EB, Price JD (2002) Kinetics of the reaction MgO + Al\(_2\)O\(_3\) \(\longrightarrow \) MgAl\(_2\)O\(_4\) and Al–Mg interdiffusion in spinel at 1200 to 2000\(^{\circ }\)C and 1.0 to 4.0 GPa. Geochim Cosmochim Ac. doi: 10.1016/S0016-7037(02)00827-X

  9. Liu CM, Chen JC, Chen CJ (2005) The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions. J Cryst Growth. doi:10.1016/j.jcrysgro.2005.08.023

  10. Götze LC, Abart R, Rybacki E, Keller LM, Petrishcheva E, Dresen G (2010) Reaction rim growth in the system MgO-Al\(_2\)O\(_3\)-SiO\(_2\) under uniaxial stress. Miner Petrol. doi:10.1007/s00710-009-0080-3

  11. Schmalzried H (1981) Solid state reactions. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  12. Hesse D, Senz S, Scholz R, Werner P, Heydenreich J (1994) Structure and morphology of the reaction fronts during the formation of MgAl\(_2\)O\(_4\) thin films by solid state reaction between R-cut sapphire substrates and MgO films. Interface Sci 2:221–237

    Google Scholar 

  13. Carter RE (1961) Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44:116–120

    Article  Google Scholar 

  14. Rossi RC, Fulrath RM (1963) Epitaxial growth of spinel by reaction in the solid state. J Am Ceram Soc 46:145–149

    Article  Google Scholar 

  15. Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics. Am Mineral. doi:10.2138/am.2010.3372

  16. Jeřábek P, Abart R, Rybacki E, Habler G (2014) Microstructure and texture evolution during growth of magnesio-aluminate spinel at corundum-periclase interfaces under uniaxial load: the effect of stress concentration on reaction progress. Am J Sci. doi:10.2475/05.2014.02

  17. Fisher GW (1978) Rate laws in metamorphism. Geochim Cosmochim Acta. doi:10.1016/0016-7037(78)90292-2

  18. Abart R, Petrishcheva E (2011) Thermodynamic model for reaction rim growth: interface reaction and diffusion control. Am J Sci. doi:10.2475/06.2011.02

  19. He T, Becker KD (1997) An optical in-situ study of a reacting spinel crystal. Solid State Ionics 101–103:337–342

    Article  Google Scholar 

  20. Kotula PG, Carter CB (1996) Interfacial control of reaction kinetics in oxides. Phys Rev Lett 77:3367–3370

    Article  Google Scholar 

  21. Kotula PG, Carter CB (1998) Kinetics of thin-film reactions of nickel oxide with alumina: I, (0001) and {11\(\overline{2}\)0} reaction couples. J Am Ceram Soc 81:2869–2876

    Article  Google Scholar 

  22. Kotula PG, Johnson MT, Carter CB (1998) Thin-film reactions. Z Phys Chem 206:73–99

    Article  Google Scholar 

  23. Pin S, Suardelli M, D’Acapito F, Spinolo G, Zema M, Tarantino SC, Barba L, Ghigna P (2013) Role of interfacial energy and crystallographic orientation on the mechanism of the ZnO + Al\(_2\)O\(_3\) \(\longrightarrow \) ZnAl\(_2\)O\(_4\) solid-state reaction: II. Reactivity of films deposited onto the sapphire (001) face. J Phys Chem. doi:10.1021/jp312517w

  24. Hazen RM (1976) Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase. Am Mineral 61:266–271

    Google Scholar 

  25. Dohmen R, Becker HW, Meissner E, Etzel T, Chakraborty S (2002) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur J Mineral 14:1155–1168

    Article  Google Scholar 

  26. Kotula PG, Carter CB (1995) Volume expansion and lattice rotations in solid-state reactions between oxides. Scripta Metall Mater 32:863–866

    Article  Google Scholar 

  27. Resel R, Tamas E, Sonderegger B, Hofbauer P, Keckes J (2003) A heating stage up to 1173 K for X-ray diffraction studies in the whole orientation space. J Appl Crystallogr. doi:10.1107/S0021889802019568

  28. Genzel C, Denks IA, Gibmeier J, Klaus M, Wagener G (2007) The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl Instrum Methods A. doi:10.1016/j.nima.2007.05.209

  29. Helmholtz-Zentrum Berlin für Materialien und Energie (2016a) The 7T-MPW-EDDI beamline at BESSY II. J Large Scale Res Facil. doi:10.17815/jlsrf-2-63

  30. Erko A, Packe I, Hellwig C, Fieber-Erdmann M, Pawlizki O, Veldkamp M, Gudat W (2000) KMC-2: the new X-ray beamline at BESSY II. AIP Conference Proceedings. doi:10.1063/1.1291824

  31. Helmholtz-Zentrum Berlin für Materialien und Energie (2016b) KMC-2: an X-ray beamline with dedicated diffraction and XAS endstations at BESSY II. J Large Scale Res Facil. doi:10.17815/jlsrf-2-65

  32. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr. doi:10.1107/S0021889810030499

  33. Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral. doi:10.1127/0935-1221/2004/0016-0863

  34. Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol. doi:10.1016/j.chemgeo.2008.05.019

  35. Zhou RS, Snyder RL (1991) Structures and transformation mechanisms of the \(\eta \), \(\upgamma \) and \(\theta \) transition aluminas. Acta Crystallogr B 47:617–630

    Article  Google Scholar 

  36. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012

    Article  Google Scholar 

  37. Hallstedt B (1992) Thermodynamic assessment of the system MgO-Al\(_2\)O\(_3\). J Am Ceram Soc 75:1497–1507

    Article  Google Scholar 

  38. Navrotsky A, Wechsler BA, Geisinger K, Seifert F (1986) Thermochemistry of MgAl\(_2\)O\(_4\)-Al\(_{8/3}\)O\(_4\) defect spinels. J Am Ceram Soc 69:418–422

    Article  Google Scholar 

  39. Lippens BC, De Boer JH (1964) Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction. Acta Crystallogr 17:1312–1321

    Article  Google Scholar 

  40. Levin I, Bendersky LA, Brandon DG, Rühle M (1997) Cubic to monoclinic phase transformations in alumina. Acta Mater 45:3659–3669

    Article  Google Scholar 

  41. Apel D, Klaus M, Genzel C, Balzar D (2011) Rietveld refinement of energy-dispersive synchrotron measurements. Z Kristallogr. doi:10.1524/zkri.2011.1436

  42. Chou TC, Nieh TG (1991) Nucleation and concurrent anomalous grain growth of \(\upalpha \)-Al\(_2\)O\(_3\) during \(\upgamma \) \(\longrightarrow \) \(\upalpha \) phase transformation. J Am Ceram Soc 74:2270–2279

    Article  Google Scholar 

  43. Pillonnet A, Garapon C, Champeaux C, Bovier C, Brenier R, Jaffrezic H, Mugnier J (1999) Influence of oxygen pressure on structural and optical properties of Al\(_2\)O\(_3\) optical waveguides prepared by pulsed laser deposition. Appl Phys A 69:S735–S738

    Article  Google Scholar 

  44. Cibert C, Hidalgo H, Champeaux C, Tristant P, Tixier C, Desmaison J, Catherinot A (2008) Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films 516:1290–1296

    Article  Google Scholar 

  45. Shin J, Goyal A, Wee SH (2009) Growth of epitaxial \(\upgamma \)-Al\(_2\)O\(_3\) films on rigid single-crystal ceramic substrates and flexible, single-crystal-like metallic substrates by pulsed laser deposition. Thin Solid Films 517:5710–5714

    Article  Google Scholar 

  46. Comer JJ, Tombs NC, Fitzgerald JF (1966) Growth of single-crystal and polycrystalline thin films of MgAl\(_2\)O\(_4\) and MgFe\(_2\)O\(_4\). J Am Ceram Soc 49:237–240

    Article  Google Scholar 

  47. Sieber H, Hesse D, Pan X, Senz S, Heydenreich J (1996) TEM investigations of spinel-forming solid state reactions: reaction mechanism, film orientation, and interface structure during MgAl\(_2\)O\(_4\) formation on MgO (001) and Al\(_2\)O\(_3\) (1\(\overline{1}\).2) single crystal substrates. Z Anorg Allg Chem 622:1658–1666

    Article  Google Scholar 

  48. Waterhouse GIN, Chen WT, Chan A, Jin H, Sun-Waterhouse D, Cowie BCC (2015) Structural, optical, and catalytic support properties of \(\upgamma \)-Al\(_2\)O\(_3\) inverse opals. J Phys Chem C. doi:10.1021/acs.jpcc.5b00437

  49. Redfern SAT, Harrison RJ, O’Neill HSC, Wood DRR (1999) Thermodynamics and kinetics of cation ordering in MgAl\(_2\)O\(_4\) spinel up to 1600 \(^{\circ }\)C from in situ neutron diffraction. Am Mineral 84:299–310

    Article  Google Scholar 

  50. Grundmann M (2011) Formation of epitaxial domains: unified theory and survey of experimental results. Phys Status Solidi B. doi:10.1002/pssb.201046530

  51. Li DX, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1992) A high-resolution electron microscopy study of MgO/Al\(_2\)O\(_3\) interfaces and MgAl\(_2\)O\(_4\) spinel formation. Philos Mag A. doi:10.1080/01418619208201530

  52. Gupta RK, Yakuphanoglu F (2011) Epitaxial growth of MgFe\(_2\)O\(_4\) (111) thin films on sapphire (0001) substrate. Mater Lett. doi:10.1016/j.matlet.06.091

  53. Winterstein JP, Sezen M, Rečnik A, Carter CB (2016) Electron microscopy observations of the spinel-forming reaction using MgO nanocubes on Al\(_2\)O\(_3\) substrates. J Mater Sci. doi:10.1007/s10853-015-9366-5

  54. Sieber H, Hesse D, Werner P (1997) Misfit accommodation mechanisms at moving reaction fronts during topotaxial spinel-forming thin-film solid-state reactions: a high-resolution transmission electron microscopy study of five spinels of different misfits. Philos Mag A 75:889–908

    Article  Google Scholar 

  55. Kirkendall EO (1942) Diffusion of zinc in alpha brass. T Am I Min Met Eng 147:104–109

    Google Scholar 

  56. Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. T Am I Min Met Eng 171:130–142

    Google Scholar 

  57. Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gösele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater. doi:10.1038/nmat1673

Download references

Acknowledgements

R. Dohmen from the Ruhr University Bochum helped with the ablation of thin films via PLD. The EDDI beamline scientists M. Klaus and C. Genzel are thanked for assistance during beamtime, and R. Gunder is acknowledged for help during the in situ experiments. A. Schreiber and S. Gehrmann from the GFZ are acknowledged for the FIB extraction of TEM foils and substrate preparation, respectively. This study was funded by the German Research Foundation (grant number MI 1205/4-2) in the framework of the German research group FOR 741 ’Nanoscale Processes and Geomaterials Properties.’

Funding

This study was funded by the German Research Foundation (grant number MI 1205/4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Götze.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götze, L.C., Milke, R., Zizak, I. et al. In situ monitoring and ex situ TEM analyses of spinel (MgAl\(_2\)O\(_4\)) growth between (111)-oriented periclase (MgO) substrates and Al\(_2\)O\(_3\) thin films. J Mater Sci 51, 8824–8844 (2016). https://doi.org/10.1007/s10853-016-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0130-2

Keywords

Navigation