Skip to main content
Log in

Facile synthesis of melt-spinnable polyaluminocarbosilane using low-softening-point polycarbosilane for Si–C–Al–O fibers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Melt-spinnable polyaluminocarbosilane (PACS) is of importance as the precursor to prepare the Si–C–Al–O ceramic fibers, which can be employed for the preparation of SiC fibers with high tensile strength and good thermal stability. In this work, low-softening-point polycarbosilane (LPCS) was synthesized by pyrolysis of polydimethylsilane and applied to prepare PACS precursors with variable aluminum content by the reaction with aluminum(III) acetylacetonate. GPC, 1H NMR, UV–Vis, FT-IR, 29Si NMR, 27Al MAS NMR, TGA, and elemental analysis were used to analyze the composition and structure of the PACS precursors. Finally, Si–C–Al–O fibers were obtained successfully by melt-spinning, curing, and final pyrolysis of the precursors. The method demonstrated in this work can be further extended to synthesize other melt-spinnable metal-containing polycarbosilane (PMCS, M: Zr, Ti, Fe, Co, et.) of high ceramic yield and adjustable M content by reacting LPCS with other corresponding metal-containing compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Yajima S, Hasegawa Y, Okamura K, Matsuzawa T (1978) Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor. Nature 273:525–527

    Article  Google Scholar 

  2. Ishikawa T (2005) Advances in inorganic fibers. Chapter 2 in polymeric and inorganic fibers. Springer, Berlin

    Google Scholar 

  3. Korb LJ (1981) The shuttle orbiter thermal protection system. Am Ceram Soc Bull 60:1188–1193

    Google Scholar 

  4. Katoh Y, Kohyama A, Hinoki T (2003) Progress in SiC-based ceramic composites for fusion applications. Fusion Sci Technol 44:155–162

    Google Scholar 

  5. Wang Y, Wang B, Lei Y, Wu N, Han C, Gou Y, Fang D (2015) Scalable in situ growth of SnO2 nanoparticle chains on SiC ultrathin fibers via a facile sol–gel-flame method. Appl Surf Sci 335:208–212

    Article  Google Scholar 

  6. Wang B, Wang Y, Lei Y, Wu N, Gou Y, Han C, Fang D (2014) Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J Mater Chem A 2:20873–20881

    Article  Google Scholar 

  7. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837

    Google Scholar 

  8. Gou Y, Tong X, Zhang Q, Wang H, Wang B, Xie S, Wang Y (2015) Synthesis of hyperbranched polyferrocenylsilanes as preceramic polymers for Fe/Si/C ceramic microspheres with porous structures. J Mater Sci 50:7975–7984. doi:10.1007/s10853-015-9362-9

    Article  Google Scholar 

  9. Wang H, Gao B, Chen X, Wang J, Chen S, Gou Y (2013) Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate high-temperature-resistant Z rC/SiC ceramic composite. Appl Organometal Chem 27:166–173

    Article  Google Scholar 

  10. Borchardt L, Kockrick E, Wollmann P, Kaskel S, Guron MM, Sneddon LG, Geiger D (2010) Ordered mesoporous boron carbide based materials via precursor nanocasting. Chem Mater 22:4660–4668

    Article  Google Scholar 

  11. Xie Z, Deng X, Suo X, Zhou T, Gou Y (2015) Synthesis and characterization of zirconium diboride precursor based on polycentric bridge bonds. Mater Chem Phys 159:178–184

    Article  Google Scholar 

  12. Bunsell AR, Piant A (2006) A review of the development of three generations of small diameter silicon carbide fibres. J Mater Sci 41:823–839. doi:10.1007/s10853-006-6566-z

    Article  Google Scholar 

  13. Schawaller D, Clauß B, Buchmeiser MR (2012) Ceramic filament fibers: a review. Macromol Mater Eng 297:502–522

    Article  Google Scholar 

  14. Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T (1998) High-strength alkali-resistant sintered SiC fibre stable to 2200 °C. Nature 391:773–775

    Article  Google Scholar 

  15. Ishikawa T, Kajii S, Matsunaga K, Hogami T, Kohtoku Y, Nagasawa T (1998) A tough, thermally conductive silicon carbide composite with high strength up to 1600 °C in air. Science 282:1295–1297

    Article  Google Scholar 

  16. Zheng CM, Li XD, Wang H, Zhao DF, Hu TJ (2008) Evolution of crystallization and its effects on properties during pyrolysis of Si–Al–C–(O) fibers. J Mater Sci 43:3314–3319. doi:10.1007/s10853-008-2542-0

    Article  Google Scholar 

  17. Li XD, Edirisinghe MJ (2004) Evolution of the ceramic structure during thermal degradation of a Si–C–Al–O precursor. Chem Mater 16:1111–1119

    Article  Google Scholar 

  18. Cao F, Li XD, Peng P, Feng CX, Wang J, Kim DP (2002) Structural evolution and associated properties on conversion from Si–C–O–Al ceramic fibers to Si–C–Al fibers by sintering. J Mater Chem 12:606–610

    Article  Google Scholar 

  19. Sorarù GD, Mercadini M, Maschio RD, Taulelle F, Babonneau F (1993) Si–Al–O–N fibers from polymeric precursor: synthesis, structural, and mechanical characterization. J Am Ceram Soc 76:2595–2600

    Article  Google Scholar 

  20. Sorarù GD, Ravagni A, Campostrini R, Babonneau F (1991) Synthesis and characterization of β-SiAlON ceramics from organosilicon polymers. J Am Ceram Soc 74:2220–2223

    Article  Google Scholar 

  21. Babonneau F, Sorarù GD, Thorne KJ, Mackenzie JD (1991) Chemical characterization of Si–C–Al–O precursor and its pyrolysis. J Am Ceram Soc 74:1725–1728

    Article  Google Scholar 

  22. Li X, Edirisinghe MJ (2003) A new aluminum coordination site in Si–C–Al–N–(O) ceramics. J Am Ceram Soc 86:2212–2214

    Article  Google Scholar 

  23. Yu Y, Tang X (2009) Ceramic precursor aluminum-containing polycarbosilane: preparation and structure. J Inorg Organomet Polym 19:389–394

    Article  Google Scholar 

  24. Yu Y, Zhang Y, Yang J, Tang M (2007) Synthesis and characterization of ceramic precursor aluminum-containing polycarbosilane and its pyrolysis. J Inorg Organomet Polym 17:569–575

    Article  Google Scholar 

  25. Yu Y, Li X, Cao F (2005) Synthesis and characterization of polyaluminocarbosilane. J Mater Sci 40:2093–2095. doi:10.1007/s10853-005-1243-1

    Article  Google Scholar 

  26. Cao F, Kim DP, Li X, Feng C, Song Y (2002) Synthesis of polyaluminocarbosilane and reaction mechanism study. J Appl Polym Sci 85:2787–2792

    Article  Google Scholar 

  27. Yajima S, Hasegawa Y, Hayashi J, Iimura M (1978) Synthesis of continuous silicon carbide fibre with high tensile strength and high Young’s modulus part 1 synthesis of polycarbosilane as precursor. J Mater Sci 13:2569–2576. doi:10.1111/j.1151-2916.1976.tb10975.x

    Article  Google Scholar 

  28. Ichikawa H, Teranishi H, Ishikawa T (1987) Effect of curing conditions on mechanical properties of SiC fibre (Nicalon). J Mater Sci 6:420–422. doi:10.1007/BF01756783

    Google Scholar 

  29. Hasegawa Y, Okamura K (1983) Synthesis of continuous silicon carbide fibre. Part 3 pyrolysis process of polycarbosilane and structure of the products. J Mater Sci 18:3633–3648. doi:10.1007/BF00540736

    Article  Google Scholar 

  30. Fritz G, Grobe J, Kummer D (1965) Carbosilanes. Adv Inorg Chem Radiochem 7:349–418

    Google Scholar 

  31. Wang H, Li XD, Kim TS, Kim DP (2005) Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl Phys Lett 86:173104

    Article  Google Scholar 

  32. Xie W, Möbus G, Zhang S (2011) Molten salt synthesis of silicon carbide nanorods using carbon nanotubes as templates. J Mater Chem 21:18325–18330

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (Grant No. 51302313) and the Fund of Science and Technology on Advanced Ceramic Fibers and Composites Laboratory (Grant Nos. 9140C820203140C82345, 9140C820403150C82024). The financial support from Postdoctoral Science Foundation of China (Grant No. 2014M552685) was appreciated as well. The authors are also thankful for the financial support from Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and Aid Program for Innovative Group of National University of Defense Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzi Gou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, Y., Wang, H., Jian, K. et al. Facile synthesis of melt-spinnable polyaluminocarbosilane using low-softening-point polycarbosilane for Si–C–Al–O fibers. J Mater Sci 51, 8240–8249 (2016). https://doi.org/10.1007/s10853-016-0101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0101-7

Keywords

Navigation