Skip to main content
Log in

Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The clustering kinetics in quenched pure Al, binary Al–Mg and binary Al–Si alloys were studied by positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) during natural ageing (NA). Shortly after quenching, positrons annihilate either in the bulk material or in vacancy-type defects such as mono-vacancies (in Al) and vacancy–solute complexes (in Al–Mg and Al–Si alloys). Upon NA, vacancy clusters of various sizes and number densities are formed. In Al, such clusters contain typically 3 vacancies. In Al–Mg and Al–Si alloys, complexes containing various vacancies and also solute atoms are formed. The presence of shallow positron traps was detected in temperature-dependent positron lifetime experiments. They were identified as quenched-in dislocations rather than Mg or Si clusters as no solute clustering signal during NA was observed in DSC runs of the binary Al–Mg and Al–Si alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. Note that positron affinities are usually calculated for extended bulk materials (or with respect to the interface of two bulk materials). Thus, positron affinities calculated in this way do not necessarily correspond to positron affinities of single atoms inside a host matrix.

References

  1. Hirsch PB, Silcox J, Smallman RE, Westmacott KH (1958) Dislocation loops in quenched aluminium. Philos Mag 3:897–908

    Article  Google Scholar 

  2. Luna CR, Macchi C, Juan A, Somoza A (2013) Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J Phys Conf Ser 443:012019

    Article  Google Scholar 

  3. Fischer FD, Svoboda J, Appel F, Kozeschnik E (2011) Modeling of excess vacancy annihilation at different types of sinks. Acta Mater 59:3463–3472

    Article  Google Scholar 

  4. Panseri C, Federighi T (1958) Isochronal annealing of vacancies in aluminium. Philos Mag 3:1223–1240

    Article  Google Scholar 

  5. Panseri C, Gatto F, Federighi T (1958) Interaction between solute magnesium atoms and vacancies in aluminium. Acta Metall 6:198–204

    Article  Google Scholar 

  6. Ozawa E, Kimura H (1970) Excess vacancies and nucleation of precipitates in aluminum-silicon alloys. Acta Metall 18:995–1004

    Article  Google Scholar 

  7. Banhart J, Chang CST, Liang ZQ, Wanderka N, Lay MDH, Hill AJ (2010) Natural aging in Al–Mg–Si alloys–a process of unexpected complexity. Adv Eng Mater 12:559–571

    Article  Google Scholar 

  8. Panseri C, Federighi T (1966) A resistometric study of precipitation in an aluminium-1.4 percent Mg2Si alloy. J I Met 94:99–197

    Google Scholar 

  9. Banhart J, Lay MDH, Chang CST, Hill AJ (2011) Kinetics of natural aging in Al–Mg–Si alloys studied by positron annihilation lifetime spectroscopy. Phys Rev B 83:014101

    Article  Google Scholar 

  10. Pashley DW, Rhodes JW, Sendorek A (1966) Delayed ageing in aluminium-magnesium-silicon alloys: effect on structure and mechnical properties. J I Met 94:41–49

    Google Scholar 

  11. Liu M (2014) Clustering kinetics in Al–Mg–Si alloys investigated by positron annihilation techniques. PhD Dissertation, Technische Universität Berlin

  12. Lay MDH, Zurob HS, Hutchinson CR, Bastow TJ, Hill AJ (2012) Vacancy behavior and solute cluster growth during natural aging of an Al–Mg–Si alloy. Metall Mater Trans A 43A:4507–4513

    Article  Google Scholar 

  13. De Geuser F, Lefebvre W, Blavette D (2006) 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Phil Mag Lett 86:227–234

    Article  Google Scholar 

  14. Murayama M, Hono K, Saga M, Kikuchi M (1998) Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys. Mat Sci Eng A 250:127–132

    Article  Google Scholar 

  15. Klobes B, Maier K, Staab TEM (2015) Early stage ageing effects and shallow positron traps in Al–Mg–Si alloys. Philos Mag 95:1414–1424

    Article  Google Scholar 

  16. Liu M, Čižek J, Chang CST, Banhart J (2015) Early stages of solute clustering in an Al–Mg–Si alloy. Acta Mater 91:355–364

    Article  Google Scholar 

  17. Liu M, Yan Y, Liang ZQ, Chang CST, Banhart J (2012) Influence of Mg and Si atoms on the cluster formation process in Al–Mg–Si alloys studied by positron annihilation lifetime spectroscopy. In: Weiland H, Rollett AD, Cassada WA (eds), Proceedings of the 13th International Conference on Aluminium Alloys (ICAA13), Pittsburgh, pp 1131–1137

  18. Lengeler B (1976) Quenching of high-quality gold single-crystals. Philos Mag 34:259–264

    Article  Google Scholar 

  19. Dannefaer A (1981) On the effect of backscattering of γ quanta and statistics in positron-annihilation lifetime measurements. Appl Phys A 26:255–259

    Article  Google Scholar 

  20. Dorikens-Vanpraet L, Segers D, Dorikens M (1980) The influence of geometry on the resolution of a positron annihilation lifetime spectrometer. Appl Phys 23:149–152

    Article  Google Scholar 

  21. Banhart J, Liu M, Yan Y et al (2012) Study of ageing in Al–Mg–Si alloys by positron annihilation spectroscopy. Physica B 407:2689–2696

    Article  Google Scholar 

  22. Leighly HP (2006) Positron annihilation of defects in metals and alloys. In: Mackenzie DS, Totten GE (eds) Analytical characterization of aluminum, steel, and superalloys. Taylor & Francis, Boca Raton, pp 661–676

    Google Scholar 

  23. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instru Meth Phys Res A 374:235–244

    Article  Google Scholar 

  24. Gottstein G (1998) Physikalische Grundlagen der Materialkunde. In: Kristallbaufehler. Springer, Berlin, pp 67–70

  25. Carling KM, Wahnström G, Mattsson TR, Sandberg N, Grimvall G (2003) Vacancy concentration in Al from combined first-principles and model potential calculations. Phys Rev B 67:054101

    Article  Google Scholar 

  26. Ehrhart P, Jung P, Schultz H, Ullmaier H (1991) Landolt-Börnstein, New series III/25. In: Ullmaier H (ed) Atomic defects in metals · Al. Springer, Berlin, pp 211–223

    Chapter  Google Scholar 

  27. Seeger A (1973) Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques. J Phys F 3:248–294

    Article  Google Scholar 

  28. Staab TEM, Zschech E, Krause-Rehberg R (2000) Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AlCuMg 2024 alloy. J Mater Sci 35:4667–4672

    Article  Google Scholar 

  29. Puska M, Nieminen RM (1983) Defect spectroscopy with positrons: a general calculational method. J Phys F Met Phys 13:333–346

    Article  Google Scholar 

  30. Schaefer HE (1987) Investigation of thermal-equilibrium vacancies in metals by positron annihilation. Phys Status Solidi A 102:47–65

    Article  Google Scholar 

  31. Gavini V, Bhattacharya K, Ortiz M (2007) Vacancy clustering and prismatic dislocation loop formation in aluminum. Phys Rev B 76:180101

    Article  Google Scholar 

  32. Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors. Springer, Heidelberg

    Book  Google Scholar 

  33. Nieminen RM, Laakkonen J (1979) Positron trapping rate into vacancy clusters. Appl Phys 20:181–184

    Article  Google Scholar 

  34. Royset J, Stene T, Seater JA, Reiso O (2006) The effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si alloys, Aluminium Alloys 2006, Pts 1 and 2 519–521: 239–244

  35. Calloni A, Dupasquier A, Ferragut R et al (2005) Positron localization effects on the Doppler broadening of the annihilation line: aluminum as a case study. Phys Rev B 72:054112

    Article  Google Scholar 

  36. Dlubek G, Gerber W, Vehanen A, Ylikauppila J (1980) A positron annihilation study of vacancies and their clusters in diluted aluminum alloys quenched or neutron-irradiated. Cryst Res Technol 15:1409–1413

    Google Scholar 

  37. Dlubek G, Brummer O, Moser B (1981) A positron annihilation study of quenched-in defects in diluted Al–Mg alloys. Phys Status Solidi A 63:K115–K118

    Article  Google Scholar 

  38. Stott MJ, Kubica P (1975) New approach to the positron distribution in metals and alloys. Phys Rev B 11:1–10

    Article  Google Scholar 

  39. Puska MJ, Nieminen RM (1989) Positron affinities for elemental metals. J Phys Condens Matter 1:6081–6093

    Article  Google Scholar 

  40. Lang P, Shan YV, Kozeschnik E (2014) The life-time of structural vacancies in the presence of solute trapping. Mater Sci Forum 794–796:963–970

    Article  Google Scholar 

  41. Corbel C, Gupta RP (1981) Positron lifetime in vacancy-impurity complexes. J Phys Lett 42:547–550

    Article  Google Scholar 

  42. Melikhova O, Kuriplach J, Čižek J, Prochazka I (2006) Vacancy-solute complexes in aluminum. Appl Surf Sci 252:3285–3289

    Article  Google Scholar 

  43. Segers D, van Mourik P, van Wijingaarden MH, Rao BM (1984) Precipitation of silicon in a solid quenched aluminium–silicon (1.3 at%) alloy studied by positron annihilation. Physica Status Solidi A 81:209–216

    Article  Google Scholar 

  44. Liang ZQ, Chang CST, Abromeit C, Banhart J, Hirsch J (2012) The kinetics of clustering in Al–Mg–Si alloys studied by Monte Carlo simulation. Int J Mater Res 103:980–986

    Article  Google Scholar 

  45. Mantina M, Wang Y, Chen LQ, Liu ZK, Wolverton C (2009) First principles impurity diffusion coefficients. Acta Mater 57:4102–4108

    Article  Google Scholar 

  46. Wert C, Zener C (1949) Interstitial atomic diffusion coefficients. Phys Rev 76:1169–1175

    Article  Google Scholar 

  47. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121–127

    Article  Google Scholar 

  48. Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the embedded atom method. J Mater Res 4:102–112

    Article  Google Scholar 

  49. Hirosawa S, Nakamura F, Sato T (2007) First-principles calculation of interaction energies between solutes and/or vacancies for predicting atomistic behaviors of microalloying elements in aluminum alloys. Mater Sci Forum 561–565:283–286

    Article  Google Scholar 

  50. Hoshino T, Zeller R, Dederichs PH (1996) Local-density-functional calculations for defect interactions in Al. Phys Rev B 53:8971–8974

    Article  Google Scholar 

  51. Dlubek G, Krause R, Brummer O, Plazaola F (1986) Study of formation and reversion of Guinier-Preston zones in Al-4.5at-percent-Zn-Xat-percent-Mg alloys by positrons. J Mater Sci 21:853–858

    Article  Google Scholar 

  52. Krause R, Dlubek G, Brummer O, Skladnikiewitz S, Daut H (1985) Nucleation and precipitation in an Al–Si(1 at-percent) alloy investigated by positron annihilation. Cryst Res Technol 20:267–269

    Article  Google Scholar 

  53. Somoza A, Petkov MP, Lynn KG (2002) Stability of vacancies during solute clustering in Al–Cu based alloys. Phys Rev B 65:094107

    Article  Google Scholar 

  54. Zou B, Chen ZQ, Liu CH, Chen JH (2014) Vacancy-Mg complexes and their evolution in early stages of aging of Al–Mg based alloys. Appl Surf Sci 298:50–55

    Article  Google Scholar 

  55. Dlubek G, Brummer O, Hautojarvi P (1986) A positron study of precipitation phenomena in Al–Ge and Al–Si alloys. Acta Metall 34:661–667

    Article  Google Scholar 

  56. Pagh B, Hansen HE, Nielsen B, Trumpy G, Petersen K (1984) Temperature dependence of positron annihilation parameters in neutron irradiated molybdenum. Appl Phys A 33:255–263

    Article  Google Scholar 

  57. Saarinen K, Hautojarvi P, Vehanen A, Krause R, Dlubek G (1989) Shallow positron traps in GaAs. Phys Rev B 39:5287–5296

    Article  Google Scholar 

  58. Gupta AK, Lloyd DJ (1999) Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry. Metall Mater Trans A 30:879–884

    Article  Google Scholar 

  59. Bouchear M, Hamana D, Laoui T (1996) GP zones and precipitate morphology in aged Al–Mg alloys. Phil Mag A 73:1733–1740

    Article  Google Scholar 

  60. Nozato R, Ishihara S (1980) Calorimetric study of precipitation process in Al–Mg alloys. T Jpn I Met 21:580–588

    Article  Google Scholar 

  61. Roth M, Raynal JM (1974) Small-angle neutron scattering by Guinier-Preston zones in Al–Mg alloys. J Appl Crystallogr 7:219–221

    Article  Google Scholar 

  62. Thomas G (1959) Quenching defects in binary aluminium alloys. Philos Mag 4:1213–1228

    Article  Google Scholar 

  63. Smedskjaer LC, Manninen M, Fluss MJ (1980) An alternative interpretation of positron annihilation in dislocations. J Phys F Met Phys 10:2237

    Article  Google Scholar 

  64. Dupasquier A, Romero R, Somoza A (1993) Positron trapping at grain boundaries. Phys Rev B 48:9235

    Article  Google Scholar 

  65. Hashimoto E, Kino T (1991) Temperature dependence of positron trapping to dislocations in aluminum. J Phys Soc Jpn 60:3167

    Article  Google Scholar 

  66. Westmacott KH, Hull D, Barnes RS, Smallman RE (1959) Dislocation sources in quenched aluminium-based alloys. Philos Mag 4:1089–1092

    Article  Google Scholar 

  67. Del Rio J, De Diego N, Plazaola F (1998) Temperature dependence of positron trapping at defects in an Al–Li alloy. J Phys Condens Matter 10:5327–5333

    Article  Google Scholar 

  68. Kiritani M (1964) Formation of voids and dislocation loops in quenched aluminum. J Phys Soc Jpn 19:618–631

    Article  Google Scholar 

  69. Starink MJ, Zahra AM (1998) Kinetics of isothermal and non-isothermal precipitation in an Al-6 at% Si alloy. Phil Mag A 77:187–199

    Article  Google Scholar 

Download references

Acknowledgement

The Deutsche Forschungsgemeinschaft (DFG) funded this project (Ba 1170/22, STA 527/3). Hydro Aluminium in Bonn provided the alloys investigated. Support from Prof. K. Maier (University Bonn), Prof. R. Krause-Rehberg (University Halle) and Mrs. C. Förster (Helmholtz-Zentrum Berlin) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Klobes, B. & Banhart, J. Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys. J Mater Sci 51, 7754–7767 (2016). https://doi.org/10.1007/s10853-016-0057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0057-7

Keywords

Navigation