Skip to main content
Log in

A model of the mechanical degradation of foam replicated scaffolds

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tissue engineering scaffolds are implants that actively support tissue growth whilst providing mechanical support. For optimum functionality, they are designed to slowly dissolve in vivo so that no foreign material remains permanently implanted inside the body. The current study uses a simple degradation model that estimates the change of scaffold geometry due to surface erosion. This model is applied on scaffolds that have been manufactured using the foam replication method. In order to capture their complex geometry, micro-computed tomography scans of samples are obtained. Their change in geometry and degradation of mechanical properties is evaluated using computational analysis. The present investigation found that the mechanical properties such as the quasi-elastic gradient, 0.2 % offset yield stress and the plateau stress are decreased systematically over a 10-week period of immersion time. Deformation analysis on the titania foam scaffold is performed by means of the deformed model obtained from finite element calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  Google Scholar 

  2. Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira JMF (2014) Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J Eur Ceram Soc 34(1):107–118

    Article  Google Scholar 

  3. Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet E, Teoh S-H (2002) Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C 20(1):35–42

    Article  Google Scholar 

  4. Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt R (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci A 42(3):624–638

    Article  Google Scholar 

  5. Midha S, Kim TB, van den Bergh W, Lee PD, Jones JR, Mitchell CA (2013) Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 9(11):9169–9182

    Article  Google Scholar 

  6. Chen QZ, Boccaccini AR (2006) Poly (D, L-lactic acid) coated 45S5 Bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A 77(3):445–457

    Article  Google Scholar 

  7. Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE (2008) Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater 4(6):1854–1864

    Article  Google Scholar 

  8. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  Google Scholar 

  9. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  Google Scholar 

  10. Fu Q, Saiz E, Tomsia AP (2011) Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater 21(6):1058–1063

    Article  Google Scholar 

  11. Menon A (2009) Sintering Additives for Nanocrystalline Titania and Processing of Porous Bone Tissue Engineering Scaffolds. University of Central Florida Orlando, Florida

    Google Scholar 

  12. Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 64A(1):164–170

    Article  Google Scholar 

  13. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31(7):1245–1256

    Article  Google Scholar 

  14. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7):964–973

    Article  Google Scholar 

  15. Karl S, Somers AV (1963) Method of making porous ceramic articles. Google Patents, 1963

  16. Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425

    Article  Google Scholar 

  17. Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 95(1):172–179

    Article  Google Scholar 

  18. Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X (2009) In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng C 29(7):2275–2281

    Article  Google Scholar 

  19. Meng D, Rath SN, Mordan N, Salih V, Kneser U, Boccaccini AR (2011) In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. J Biomed Mater Res A 99(3):435–444

    Article  Google Scholar 

  20. Fiedler T, Fisher M, Roether JA, Belova IV, Samtleben T, Bernthaler T, Murch GE, Boccaccini AR (2014) Strengthening mechanism of PDLLA coated titania foam. Mech Mater 69(1):35–40

    Article  Google Scholar 

  21. Torio-Padron N, Paul D, von Elverfeldt D, Stark GB, Huotari AM (2011) Resorption rate assessment of adipose tissue-engineered constructs by intravital magnetic resonance imaging. J Plast Reconstr Aesthetic Surg 64(1):117–122

    Article  Google Scholar 

  22. Kłodowski K, Kamiński J, Nowicka K, Tarasiuk J, Wroński S, Świętek M, Błażewicz M, Figiel H, Turek K, Szponder T (2014) Micro-imaging of implanted scaffolds using combined MRI and micro-CT. Comput Med Imaging Graph 38(6):458–468

    Article  Google Scholar 

  23. Han X, Pan J (2009) A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30(3):423–430

    Article  Google Scholar 

  24. Wang Y, Pan J, Han X, Sinka C, Ding L (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29(23):3393–3401

    Article  Google Scholar 

  25. Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972

    Article  Google Scholar 

  26. Sanz-Herrera JA, Boccaccini AR (2011) Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. Int J Solids Struct 48(2):257–268

    Article  Google Scholar 

  27. Winkelstein BA (2012) Orthopaedic biomechanics. CRC Press, Boca Raton

    Book  Google Scholar 

  28. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–114

    Article  Google Scholar 

  29. Attawia MA, Herbert KM, Uhrich KE, Langer R, Laurencin CT (1999) Proliferation, morphology, and protein expression by osteoblasts cultured on poly (anhydride-co-imides). J Biomed Mater Res 48(3):322–327

    Article  Google Scholar 

  30. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  Google Scholar 

  31. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  32. Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly(D, L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25(27):5821–5830

    Article  Google Scholar 

  33. Caty O, Maire E, Youssef S, Bouchet R (2008) Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements. Acta Mater 56(19):5524–5534

    Article  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675

    Article  Google Scholar 

  35. Kotov NA, Meldrum FC, Fendler JH (1994) Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances. J Phys Chem 98(36):8827–8830

    Article  Google Scholar 

  36. Veyhl C, Belova IV, Murch GE, Öchsner A, Fiedler T (2010) On the mesh dependence of non-linear mechanical finite element analysis. Finite Elem Anal Des 46(5):371–378

    Article  Google Scholar 

  37. Tekkaya AE (2000) Relationship between Vickers Hardness and Yield Stress for Cold Formed Materials. Steel Res, 71(1)

  38. Tabor D (1951) The hardness of metals, vol 10. Clarendon, Oxford

    Google Scholar 

  39. Li Z, Qu Y, Zhang X, Yang B (2009) Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO3. Acta Biomater 5(6):2189–2195

    Article  Google Scholar 

  40. Kalita SJ, Qiu S, Verma S (2008) A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties. Mater Chem Phys 109(2–3):392–398

    Article  Google Scholar 

  41. I. Standard, ISO 13314:2011(E) (2011) Mechanical testing of metals—ductility testing—compression test for porous and cellular metals. Ref Number ISO 13314(13314):1–7

  42. San Marchi C, Mortensen A (2001) Deformation of open-cell aluminum foam. Acta Mater 49(19):3959–3969

    Article  Google Scholar 

  43. Conde Y, Despois J, Goodall R, Marmottant A, Salvo L, San Marchi C, Mortensen A (2006) Replication processing of highly porous materials. Adv Eng Mater 8(9):795–803

    Article  Google Scholar 

  44. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  Google Scholar 

  45. Torres FG, Nazhat SN, Sheikh SH, Fadzullah SSM, Maquet V, Boccaccini AR (2007) Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. Compos Sci Technol 67(6):1139–1147

    Article  Google Scholar 

  46. Baker SC, Rohman G, Southgate J, Cameron NR (2009) The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30(7):1321–1328

    Article  Google Scholar 

  47. Badiche X, Forest S, Guibert T, Bienvenu Y, Bartout J-D, Ienny P, et al (2000) Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Mater Sci Eng A 289:276–288

    Article  Google Scholar 

  48. Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33:1575–1583

    Article  Google Scholar 

  49. Zhou J, Shrotriya P, Soboyejo WO (2004) Mechanisms and mechanics of compressive deformation in open-cell Al foams. Mech Mater 36:781–797

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Australian Research Council through its Discovery Project DP130101377 “Structural design of third generation biomaterials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sulong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulong, M.A., Belova, I.V., Boccaccini, A.R. et al. A model of the mechanical degradation of foam replicated scaffolds. J Mater Sci 51, 3824–3835 (2016). https://doi.org/10.1007/s10853-015-9701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9701-x

Keywords

Navigation