Skip to main content
Log in

Soft mechanochemical synthesis and electrochemical behavior of LiVMoO6 for all-solid-state lithium batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report a novel route to obtain LiVMoO6 nanocrystals using a soft mechanochemical synthesis method. Powder X-ray diffraction, infrared, and Raman data indicated the formation of a single-phase LiVMoO6 with brannerite-type structure after 60-min milling time. The average particles size of the obtained LiVMoO6, derived from transmission electron microscopy data is about 46 nm. From UV–Vis diffuse reflectance spectrum, the direct band gap value (2.77 eV) of the material was estimated. The electrochemical characterization of the LiVMoO6 obtained was performed for the first time by assembling an all-solid-state cell, employing LiVMoO6 as a cathode active material. Discharge–charge measurements for 10 cycles were performed in the potential range from 1.8 to 3.7 V under a current density of 0.1 mA cm−2 at room temperature. The assembled all-solid-state Li-In/80Li2S·20P2S5 glass–ceramics/LiVMoO6 battery presents a sustainable reversible capacity of 35 mAh g−1 and a coulombic efficiency close to 100 % after the second to the 10th cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reddy MA, Kishore MS, Pralong V, Caignaert V, Varadaraju UV, Raveau B (2007) Electrochemical performance of VOMoO4 as negative electrode material for Li ion batteries. Power Sources 168:509–512

    Article  Google Scholar 

  2. Mikhailova D, Sarapulova A, Voss A, Thomas A, Oswald S, Gruner W, Trots DM, Bramnik NN, Ehrenberg H (2010) Li3V(MoO4)3: a new material for both Li extraction and insertion. Chem Mater 22:3165–3173

    Article  Google Scholar 

  3. Kazakopoulos A, Kalogirou O (2008) Impedance spectroscopy study of LiCuVO4. Solid State Ionics 179:936–940

    Article  Google Scholar 

  4. Julien CM (2003) Lithium intercalated compounds: charge transfer and related properties. Mater Sci Eng R 40:47–102

    Article  Google Scholar 

  5. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  6. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenym oxides: batteries and electrochromics. J Mater Chem 19:2526–2552

    Article  Google Scholar 

  7. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  Google Scholar 

  8. Michael M, Fauzi A, Prabaharan SRS (2000) Soft-combustion (wet chemical) synthesis of a new 4-V class cathode-active material, LiVMoO6, for Li-ion batteries. Int J Inorg Mater 2:261–267

    Article  Google Scholar 

  9. Julien C (2000) 4-Volt cathode materials for rechargeable lithium batteries wet chemistry synthesis, structure and electrochemistry. Ionics 6:30–46

    Article  Google Scholar 

  10. Liu R, Wang C, Jang L, Lee J (2002) A new anode material LiVMoO6 for use in rechargeable Li-ion batteries. Tamkang J Sci Eng 5:107–112

    Google Scholar 

  11. Amdouni N, Zarrouk H, Soulette F, Julien C (2003) Synthesis, structure and lithium intercalation reaction in LiVMoO6 brannerite-type materials. J Mater Chem 13:2374–2380

    Article  Google Scholar 

  12. Liu R, Wang Y, Drozd V, Hu S, Sheu H (2005) A novel anode material LiVMoO6 for rechargeable lithium-ion batteries. Electrochem Solid State Lett 8:A650–A653

    Article  Google Scholar 

  13. Liang Y, Yang S, Yi Z, Li M, Sun J, Zhou Y (2005) Rheological phase synthesis and electrochemical performances of LiVMoO6 as a high-capacity anode material for lithium ion batteries. J Mater Sci 40:5553–5555. doi:10.1007/s10853-005-4549-0

    Article  Google Scholar 

  14. Liang Y, Han X, Cong C, Yi Z, Zhou L, Sun J, Zhang K, Zhou Y (2007) Controlled synthesis of rod-like LiVMoO6 nanocrystals for application in lithium-ion batteries. Nanotechnology 18:135607–135613

    Article  Google Scholar 

  15. Zhou L, Liang Y, Hu L, Han X, Yi Z, Sun J, Yang S (2008) Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. J Alloys Comp 457:389–393

    Article  Google Scholar 

  16. Chen N, Wang C, Hu F, Bie X, Wei Y, Chen G, Du F (2015) Brannerite-type vanadium–molybdenum oxide LiVMoO6 as a promising anode material for lithium-ion batteries with high capacity and rate capability. ACS Appl Mater Interfaces 7:16117–16123

    Article  Google Scholar 

  17. Cushing BL, Kang SH, Goodenough JB (2001) Instability of brannerite cathode materials upon lithium insertion. Int J Inorg Mater 3:875–879

    Article  Google Scholar 

  18. Kosova N, Devyatkina E, Osintsev D (2004) Dispersed materials for rechargeable lithium batteries: reactive and non-reactive grinding. J Mater Sci 39:5031–5036. doi:10.1023/B:JMSC.0000039181.03644.b0

    Article  Google Scholar 

  19. Senna M (1993) Incipient chemical interaction between fine particles under mechanical stress – a feasibility of producing advanced materials via mechanochemical routes. Solid State Ionics 63–65:3–9

    Article  Google Scholar 

  20. Avakumov E, Senna M, Kosova N (2001) Soft mechanochemical synthesis: a basis for new chemical technologies. Kluwer Academic Publisher, Boston

    Google Scholar 

  21. Milanova M, Iordanova R, Dimitriev Y, Kostov K, Vassilev S (2007) Influence of the synthesis methods on the particles size of the LiVMoO6 phase. J Mater Sci 42:3349–3352. doi:10.1007/s10853-006-1169-2

    Article  Google Scholar 

  22. Pawley G (1981) Unit-cell refinement from powder diffraction scans. J Appl Cryst 14:357–361

    Article  Google Scholar 

  23. Bruker AXS (2008): TOPAS V4: General profile and structure analysis software for powder diffraction data. - User’s Manual, Bruker AXS, Karlsruhe, Germany

  24. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Solidi b 15:627–637

    Article  Google Scholar 

  25. Run R, Wadsley A (1966) The crystal structure of ThTi2O6 (brannerite). Acta Cryst 21:974–978

    Article  Google Scholar 

  26. Hurtado L, Torres-García E, Romero R, Ramírez-Serrano A, Wood J, Natividad R (2013) Photocatalytic performance of Li1-xAgxVMoO6 (0 ≤ x ≤ 1) compounds. Chem Eng J 234:327–337

    Article  Google Scholar 

  27. Baran EJ, Cabello CI, Nord AG (1987) Raman spectra of some MIIV2O6 brannerite- type metavanadates. J Raman Spectrosc 18:405–407

    Article  Google Scholar 

  28. Thielemann JP, Resler T, Walter A, Tzolova-Müler G, Hess C (2011) Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV-vis and X-ray absorption spectroscopy. Appl Catal A 399:28–34

    Article  Google Scholar 

  29. Zǎvoianu R, Bîrjega R, Pavel OD, Cruceanu A, Alifanti M (2005) Hydrotalcite like compounds with low Mo-loading active catalysts for selective oxidation of cyclohexene with hydrogen peroxide. Appl Catal A 286:211–220

    Article  Google Scholar 

  30. Centi G, Perathoner S, Trifiro F, Aboukais A, Aissi CF, Guelton M (1992) Physicochemical characterization of V-silicalite. J Phys Chem 96:2617–2629

    Article  Google Scholar 

  31. Porter VR, White WB, Roy R (1972) Optical spectra of the intermediate oxides of titanium, vanadium, molybdenum and tungsten. J Solid State Chem 4:250–254

    Article  Google Scholar 

  32. Aleksandrov L, Komatsu T, Iordanova R, Dimitriev Y (2011) Study of molybdenum coordination state and crystalization behaviour in MoO3-La2O3-B2O3 glasses by Raman spectroscopy. J Phys Chem Solids 72:263–268

    Article  Google Scholar 

  33. Mestl G, Verbruggen NFD, Knözinger H (1995) Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir 11:3035–3041

    Article  Google Scholar 

  34. Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II-IV semiconductor nanocrystals. Phys Rev B 69:125304–125310

    Article  Google Scholar 

  35. Navas I, Vinodkumar R, Mahadevan Pillali VP (2011) Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl Phys A 103:373–380

    Article  Google Scholar 

  36. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Source 195:7904–7929

    Article  Google Scholar 

  37. Rao MC (2010) Optical absorption studies of LiCoO2 thin films grown by pulsed laser depositions. Int J Pure Apll Phys 6:365–370

    Google Scholar 

  38. Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid state lithium battery with oxysulfide glass. Solid State Ionics 86–88:877–882

    Article  Google Scholar 

  39. Doi T, Iriyama Y, Abe T, Ogumi Z (2005) Pulse voltammetric and ac impedance spectroscopic studies on lithium ion transfer at an electrolyte/Li4/3Ti5/4O4 electrode interface. Anal Chem 77:1696–1700

    Article  Google Scholar 

  40. Kanno R, Murayama M (2001) Lithium ionic conductor thio-LISICON. J Electrochem Soc 148:A742–A746

    Article  Google Scholar 

  41. Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem Commun 5:111–114

    Article  Google Scholar 

  42. Muramatsu H, Hayashi A, Ohmoto T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119

    Article  Google Scholar 

  43. Ooura Y, Machida N, Uehara T, Kinoshita S, Naito M, Shigematsu T, Kondo S (2014) A new lithium-ion conducting glass ceramics in the composition of 75Li2S·5P5S3·20P2S5 (mol%). Solid State Ionics 262:733–737

    Article  Google Scholar 

  44. Hakari T, Nagao M, Hayashi A, Tatsumisago M (2014) Preparation of composite electrode with Li2S-P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics 262:147–150

    Article  Google Scholar 

  45. Kim J, Yoon Y, Eom M, Shin D (2012) Characterization of amorphous and crystalline Li2S-P2S5-P2Se5 solid electrolytes for all-solid-state lithium ion batteries. Solid State Ionics 225:626–630

    Article  Google Scholar 

  46. Nagao M, Hayashi A, Tatsumisago M (2013) Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol 1:186–192

    Article  Google Scholar 

  47. Kostecki R, Lei J, McLarnon F, Shim J, Striebel K (2006) Diagnostic evaluation of detrimental phenomena in high-power lithium - ion batteries. J Electrochem Soc 153:A669–A672

    Article  Google Scholar 

  48. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209

    Article  Google Scholar 

  49. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2006) High rate performances of all-solid-state In/LiCoO2 cells with the Li2S-P2S5 glass-ceramics electrolyte. Solid State Ionics 177:2731–2735

    Article  Google Scholar 

  50. Tatsumisago M, Nagao M, Hayashi A (2013) Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Ceram Soc 1:17–25

    Article  Google Scholar 

  51. Nagao M, Hayashi A, Tatsumisago M, Ichinose T, Ozaki T, Togawa Y, Mori S (2015) Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. J Power Sources 274:471–476

    Article  Google Scholar 

Download references

Acknowledgements

Some of this work was done while the author M. Milanova was visiting the Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University under financial support by The Matsumae International Foundation (MIF) in the framework of the Matsumae International Fellowship Program April–September 2014. The same author wishes to thank all the members of Prof. Tatsumisago’s group for their cooperation and support during her stay in Osaka Prefecture University. Special thanks are due to Mr. Kenji Nagao for supplying the 80Li2S·20P2S5 glass–ceramics (solid electrolyte) needed for the preparation of the all-solid-state test cell. The authors express special thanks to Professor R. Stoyanova (Institute of General and Inorganic Chemistry, BAS) for the helpful discussions of the impedance results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Milanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milanova, M., Iordanova, R., Tatsumisago, M. et al. Soft mechanochemical synthesis and electrochemical behavior of LiVMoO6 for all-solid-state lithium batteries. J Mater Sci 51, 3574–3584 (2016). https://doi.org/10.1007/s10853-015-9677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9677-6

Keywords

Navigation