Skip to main content

Advertisement

Log in

Influence of sintering pressure on the crystallization and mechanical properties of BN-MAS composite ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A type of hexagonal boron nitride-magnesium aluminosilicate composite ceramics was fabricated by hot-pressed sintering under different pressures. The relationships between sintering pressure, microstructure, and mechanical properties were investigated. The results indicate that sintering pressure has a great influence not only on the mechanical properties of composite ceramics, but also on crystallization of magnesium aluminosilicate (MAS) and structural order of hexagonal boron nitride. Under the given sintering pressure of 30 MPa, the fracture toughness of composites was greatly improved 66 % (from 2.49 to 4.12 MPa m1/2, with similar densities). It also exhibits the highest bend strength of 245 ± 23 MPa. The fracture behavior of composites and the mechanism of sintering pressure which affect the crystallization of mullite in MAS were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meng Y, Mao HK, Eng PJ, Trainor TP, Newville M, Hu MY, Kao CC, Shu JF, Hausermann D, Hemley RJ (2004) The formation of sp(3) bonding in compressed BN. Nat Mater 3(2):111–114. doi:10.1038/nmat1060

    Article  Google Scholar 

  2. Eichler J, Lesniak C (2008) Boron nitride (BN) and BN composites for high-temperature applications. J Eur Ceram Soc 28(5):1105–1109. doi:10.1016/j.jeurceramsoc.2007.09.005

    Article  Google Scholar 

  3. Steinborn C, Herrmann M, Keitel U, Schonecker A, Rathel J, Rafaja D, Eichler J (2013) Correlation between microstructure and electrical resistivity of hexagonal boron nitride ceramics. J Eur Ceram Soc 33(6):1225–1235. doi:10.1016/j.jeurceramsoc.2012.11.024

    Article  Google Scholar 

  4. Wen G, Wu GL, Lei TQ, Zhou Y, Guo ZX (2000) Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J Eur Ceram Soc 20(12):1923–1928. doi:10.1016/s0955-2219(00)00107-2

    Article  Google Scholar 

  5. Yongli L, Guanjun Q, Zhihao J (2002) Machinable Al2O3/BN composite ceramics with strong mechanical properties. Mater Res Bull 37(8):1401–1409

    Article  Google Scholar 

  6. Shi ZQ, Wang JP, Qiao GJ, Yang JF, Jin ZH (2009) Machinability, deformation, and cracks behavior of pressureless-sintered Al2O3/h-BN composites: role of weak boundary phases. J Mater Sci 44(6):1580–1587. doi:10.1007/s10853-008-3242-5

    Article  Google Scholar 

  7. German R, Suri P, Park S (2009) Review: liquid phase sintering. J Mater Sci 44(1):1–39. doi:10.1007/s10853-008-3008-0

    Article  Google Scholar 

  8. Zhang X, Chen J, Li X, Zhang J, Wan D, Zhou Y (2015) Microstructure and mechanical properties of h-BN/Y2SiO5 composites. Ceram Int 41(1, Part B):1279–1283. doi:10.1016/j.ceramint.2014.09.058

    Article  Google Scholar 

  9. Wei D, Meng Q, Jia D (2007) Microstructure of hot-pressed h-BN/Si3N4 ceramic composites with Y2O3–Al2O3 sintering additive. Ceram Int 33(2):221–226. doi:10.1016/j.ceramint.2005.09.004

    Article  Google Scholar 

  10. Li YL, Zhang JX, Qiao GJ, Jin ZH (2005) Fabrication and properties of machinable 3Y–ZrO2/BN nanocomposites. Mater Sci Eng A 397(1–2):35–40. doi:10.1016/jsea.2005.01.038

    Article  Google Scholar 

  11. Jia DC, Zhou LZ, Yang ZH, Duan XM, Zhou Y (2011) Effect of preforming process and starting fused SiO2 particle size on microstructure and mechanical properties of pressurelessly sintered BNp/SiO2 ceramic composites. J Am Ceram Soc 94(10):3552–3560. doi:10.1111/j.1551-2916.2011.04540.x

    Article  Google Scholar 

  12. Zhao H, Wang W, Fu Z, Wang H (2009) Thermal conductivity and dielectric property of hot-pressing sintered AlN–BN ceramic composites. Ceram Int 35(1):105–109. doi:10.1016/j.ceramint.2007.09.111

    Article  Google Scholar 

  13. Zheng YT, Li HB, Zhou T (2012) Microstructure and mechanical properties of h-BN–SiC ceramic composites prepared by in situ combustion synthesis. Mater Sci Eng A 540:102–106. doi:10.1016/j.msea.2012.01.105

    Article  Google Scholar 

  14. Grohol D, Han C, Pyzik AJ, Goss JM, Todd CS (2010) Acicular mullite-cordierite composites with controllable CTE values. J Am Ceram Soc 93(11):3600–3603. doi:10.1111/j.1551-2916.2010.04129.x

    Article  Google Scholar 

  15. Rohan P, Neufuss K, Matějíček J, Dubský J, Prchlík L, Holzgartner C (2004) Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying. Ceram Int 30(4):597–603. doi:10.1016/j.ceramint.2003.07.004

    Article  Google Scholar 

  16. Hwang SP, Wu JM (2001) Effect of composition on microstructural development in MgO–Al2O3–SiO2 glass-ceramics. J Am Ceram Soc 84(5):1108–1112

    Article  Google Scholar 

  17. Cho YS, Hoelzer DT, Schulze WA, Amarakoon VRW (1998) Crystallization and microstructural evolution of cordierite-based thick film dielectrics. Acta Mater 46(18):6421–6430. doi:10.1016/s1359-6454(98)00307-3

    Article  Google Scholar 

  18. Schneider H, Schreuer J, Hildmann B (2008) Structure and properties of mullite—A review. J Eur Ceram Soc 28(2):329–344. doi:10.1016/j.jeurceramsoc.2007.03.017

    Article  Google Scholar 

  19. Khatim O, Nguyen THN, Amamra M, Museur L, Khodan A, Kanaev A (2014) Synthesis and photoluminescence properties of nanostructured mullite/α-Al2O3. Acta Mater 71:108–116. doi:10.1016/j.actamat.2014.03.006

    Article  Google Scholar 

  20. Ananthakumar S, Jayasankar M, Warrier KGK (2006) Microstructural, mechanical and thermal characterisation of sol–gel-derived aluminium titanate–mullite ceramic composites. Acta Mater 54(11):2965–2973. doi:10.1016/j.actamat.2006.02.032

    Article  Google Scholar 

  21. Sung Y-M (2000) Kinetics analysis of mullite formation reaction at high temperatures. Acta Mater 48(9):2157–2162. doi:10.1016/S1359-6454(00)00032-X

    Article  Google Scholar 

  22. Meléndez-Martínez JJ, Jiménez-Melendo M, Domínguez-Rodríguez A, Wötting G (2001) High temperature mechanical behavior of aluminium titanate–mullite composites. J Eur Ceram Soc 21(1):63–70. doi:10.1016/S0955-2219(00)00165-5

    Article  Google Scholar 

  23. Martinez AGT, Camerucci MA, Cavalieri AL (2008) Thermal stress analysis of cordierite materials subjected to thermal shock. J Mater Sci 43(8):2731–2738. doi:10.1007/s10853-008-2492-6

    Article  Google Scholar 

  24. Bocker C, Kouli M, Volksch G, Russel C (2014) New insights into the crystallization of cordierite from a stoichiometric glass by in situ high-temperature SEM. J Mater Sci 49(7):2795–2801. doi:10.1007/s10853-013-7984-3

    Article  Google Scholar 

  25. Chen GH (2007) Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass–ceramics. J Mater Sci 42(17):7239–7244. doi:10.1007/s10853-007-1548-3

    Article  Google Scholar 

  26. Ma J, Liao K, Hing P (2000) Effect of aluminum nitride on the properties of cordierite. J Mater Sci 35(16):4137–4141. doi:10.1023/a:1004858909771

    Article  Google Scholar 

  27. Duan X, Wang M, Jia D, Jing N, Wu Z, Yang Z, Tian Z, Wang S, He P, Wang Y, Zhou Y (2014) Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics. Mater Sci Eng A 607:38–43. doi:10.1016/j.msea.2014.03.132

    Article  Google Scholar 

  28. Duan XM, Jia DC, Wu ZL, Tian Z, Yang ZH, Wang SJ, Zhou Y (2013) Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics. Scr Mater 68(2):104–107. doi:10.1016/j.scriptamat.2012.09.012

    Article  Google Scholar 

  29. Zhang XY, Zhang FX, Zhang JW, Yu W, Zhang M, Zhao JH, Liu RP, Xu YF, Wang WK (1998) Influence of pressures on the crystallization process of an amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. J Appl Phys 84(4):1918–1923. doi:10.1063/1.368319

    Article  Google Scholar 

  30. Baoyi LY, Yanwu XW, Wei L, Wei W, Xiangyi ZY (2008) Microstructure and magnetic properties of bulk nanocomposite magnets prepared by crystallizing amorphous Nd(3.6)Pr(5.4)Fe(80)Co(3)B(7)Nb(1) under high pressure. J Phys D 41(19):6. doi:10.1088/0022-3727/41/19/195010

    Google Scholar 

  31. Wu W, Li W, Sun HY, Li H, Li XH, Liu BT, Zhang XY (2008) Pressure-induced preferential growth of nanocrystals in amorphous Nd(9)Fe(85)B(6). Nanotechnology 19(28):4. doi:10.1088/0957-4484/19/28/285603

    Article  Google Scholar 

  32. Faupel F, Frank W, Macht MP, Mehrer H, Naundorf V, Ratzke K, Schober HR, Sharma SK, Teichler H (2003) Diffusion in metallic glasses and supercooled melts. Rev Mod Phys 75(1):237–280. doi:10.1103/RevModPhys.75.237

    Article  Google Scholar 

  33. Li XH, Wang FQ, Liu YG, Xu L, Zhao JW, Liu BT, Zhang XY (2009) Microstructure and magnetic properties of L1(0)-FePt thin films prepared under high pressures. Appl Phys Lett 94(17):3. doi:10.1063/1.3129874

    Google Scholar 

  34. Cai D, Yang Z, Duan X, Liang B, Li Q, Jia D, Zhou Y (2015) A novel BN–MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing. Mater Sci Eng A 633:194–199. doi:10.1016/j.msea.2015.03.030

    Article  Google Scholar 

  35. Lorenz H, Orgzall I (2004) Influence of the initial crystallinity on the high pressure-high temperature phase transition in boron nitride. Acta Mater 52(7):1909–1916. doi:10.1016/j.actamat.2003.12.030

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51321061, 51372050 and 51225203). The authors also thank Richard M. Laine (University of Michigan, USA) for improving the language use.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Yang or Dechang Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Yang, Z., Duan, X. et al. Influence of sintering pressure on the crystallization and mechanical properties of BN-MAS composite ceramics. J Mater Sci 51, 2292–2298 (2016). https://doi.org/10.1007/s10853-015-9531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9531-x

Keywords

Navigation