Skip to main content
Log in

Charge injection barriers at metal/polyethylene interfaces

Journal of Materials Science Aims and scope Submit manuscript

Abstract

Charge injection barriers at metal/polymer interfaces are affected by many factors, including the physical, chemical, and electronic structure of the metal, the polymer, and the interfacial region. Here, we consider a diverse set of metals (Al, Ag, Au, Pd, and Pt), and a few metal/polyethylene interfacial configurations in an attempt to span situations encountered in real metal/polyethylene systems. Several relevant electronic properties and the charge injection barriers are computed for these cases using density functional theory computations. The calculations reveal important trends and correlations, and identify the favored mechanism of charge transport (as mediated by the charge injection barriers). While satisfactory correspondences of the computations with available measurements are achieved, quantitative discrepancies still remain between the computed and measured injection barriers. These issues may be resolved when more realistic models of the interface, inclusive of its morphological complexities, are utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. IET, London

    Book  Google Scholar 

  2. Teyssedre G, Laurent C (2005) Charge transport modeling in insulating polymers: from molecular to macroscopic scale. IEEE Trans Dielectr Electr Insul 12:857–875

    Article  Google Scholar 

  3. Mizutanim T (2005) Behavior of charge carriers near metal/polymer interface. In: Proceedings of the 2005 international symposium on electrical insulating materials, Japan, pp 1–6

  4. Tanaka T (2001) Space charge injected via interfaces and tree initiation in polymers. In: IEEE conference on electrical insulation and dielectric phenomena, Kitchener, Ont, pp 1–15

  5. Taleb M, Teyssèdre G, Le Roy S (2009) Role of the interface on charge build-up in a low-density polyethylene: surface roughness and nature of the electrode. In: IEEE conference on electrical insulation and dielectric phenomena, pp 112–115

  6. Li Y, Yasuda M, Takada T (1994) Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics. IEEE Trans Dielectr Electr Insul 1:188–195

    Article  Google Scholar 

  7. Peacook AJ (2000) Handbook of polyethylene: structures: properties, and applications. Taylor & Francis, New York

    Google Scholar 

  8. Ungar G (1981) Radiation effects in polyethylene and n-alkanes. J Mater Sci 16:2635–2656. doi:10.1007/BF02402826

    Article  Google Scholar 

  9. Odak D, Kaczmarek H, Buffeteau T, Sourisseau C (2005) Photo- and bio-degradation processes in polyethylene, cellulose and their blends studied by ATR-FTIR and Raman spectroscopies. J Mater Sci 40:4189–4198. doi:10.1007/s10853-005-2821-y

    Article  Google Scholar 

  10. Huzayyin A, Boggs S, Ramprasad R (2010) Density functional analysis of chemical impurities in dielectric polyethylene. IEEE Trans Dielectr Electr Insul 17:926–930

    Article  Google Scholar 

  11. Huzayyin A, Boggs S, Ramprasad R (2010) Quantum mechanical studies of carbonyl impurities in dielectric polyethylene. IEEE Trans Dielectr Electr Insul 17:920–925

    Article  Google Scholar 

  12. Huzayyin A, Boggs S, Ramprasad R (2011) Quantum mechanical study of charge injection at the interface of polyethylene and platinum. In: IEEE conference on electrical insulation and dielectric phenomena, Cancun, pp 800–803

  13. Chen LH, Huan TD, Huzayyin A, Quintero Y, Ramprasad R (2014) First-principles study of aluminum-polyethylene interfaces. In: IEEE conference on electrical insulation and dielectric phenomena, Des Moines, IA, pp 887–890

  14. Van de Walle CG, Martin RM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35:8154–8165

    Article  Google Scholar 

  15. Uttamchandani R, Zhang X, Shankar S, Lu G (2015) Chemical tuning of band alignments for Cu/HfO\(_{2}\) interfaces. Phys Status Solidi b 252:298–304

    Article  Google Scholar 

  16. Zhu H, Ramprasad R (2011) Effective work function of metals interfaced with dielectrics: a first-principles study of the Pt-HfO\(_{2}\) interface. Phys Rev B 83:081416

    Article  Google Scholar 

  17. Zhu H, Tang C, Fonseca LRC, Ramprasad R (2012) Recent progress in ab initio simulations of hafnia-based gate stacks. J Mater Sci 47:7399–7416. doi:10.1007/s10853-012-6568-y

    Article  Google Scholar 

  18. Zhu H, Ramanath G, Ramprasad R (2013) Interface engineering through atomic dopants in HfO\(_{2}\)-based gate stacks. J Appl Phys 114:114310

    Article  Google Scholar 

  19. Mukhopadhyay AB, Sanz JF, Musgrave CB (2010) Effect of interface structure on the Ru on HfO2 work function. J Mater Sci 45:4924–4928. doi:10.1007/s10853-010-4274-1

    Article  Google Scholar 

  20. Shaltaf R, Rignanese GM, Gonze X, Giustino F, Pasquarello A (2008) Band offsets at the \({\rm {Si}} {\rm {SiO}}_{2}\) interface from many-body perturbation theory. Phys Rev Lett 100:186401

    Article  Google Scholar 

  21. Puthenkovilakam R, Chang JP (2004) An accurate determination of barrier heights at the HfO\(_{2}\)/Si interfaces. J Appl Phys 96:2701–2707

    Article  Google Scholar 

  22. Puthenkovilakam R, Chang JP (2004) Valence band structure and band alignment at the ZrO\(_{2}\)/Si interface. Appl Phys Lett 84:1353–1355

    Article  Google Scholar 

  23. Cardona QY, Zhu H, Ramprasad R (2013) Adsorption of CH\(_{3}\)S and CF\(_{3}\)S on Pt(111) surface: a density functional theory study. J Mater Sci 48:2277–2283. doi:10.1007/s10853-012-7005-y

    Article  Google Scholar 

  24. Avitabile G, Napolitano R, Pirozzi B, Rouse KD, Thomas MW, Willis BTM (1975) Low temperature crystal structure of polyethylene: results from a neutron diffraction study and from potential energy calculations. J Polym Sci Polym Lett Ed 13:351–355

    Article  Google Scholar 

  25. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  26. Haynes WM (2012) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  27. Todorova M, Reuter K, Scheffler M (2004) Oxygen overlayers on Pd (111) studied by density functional theory. J Phys Chem B 108:14477–14483

    Article  Google Scholar 

  28. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  29. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–1138

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  31. Liu CS, Pilania G, Wang CC, Ramprasad R (2012) How critical are the van der Waals interactions in polymer crystals? J Phys Chem A 116:9347–9352

    Article  Google Scholar 

  32. Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Higher-accuracy van der Waals density functional. Phys Rev B 82:081101

    Article  Google Scholar 

  33. Hybertsen MS, Louie SG (1985) First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys Rev Lett 55:1418–1421

    Article  Google Scholar 

  34. Perdew JP (1985) Density functional theory and the band gap problem. Int J Quant Chem 28:497–523

    Article  Google Scholar 

  35. Less KJ, Wilson EG (1973) Intrinsic photoconduction and photoemission in polyethylene. J Phys C 6:3110–3120

    Article  Google Scholar 

  36. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823

    Article  Google Scholar 

  37. Ramprasad R, von Allmen P, Fonseca L (1999) Contributions to the work function: a density-functional study of adsorbates at graphene ribbon edges. Phys Rev B 60:6023–6027

    Article  Google Scholar 

  38. Ramprasad R, Shi N, Tang C (2010) Dielectric polymer nanocomposites. Springer, New York, pp 133–161

    Book  Google Scholar 

  39. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605–625

    Article  Google Scholar 

  40. Ito E, Oji H, Ishii H, Oichi K, Ouchi Y, Seki K (1998) Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies. Chem Phys Lett 287:137–142

    Article  Google Scholar 

  41. Taylor DM, Lewis TJ (1971) Electrical conduction in polyethylene terephthalate and polyethylene films. J Phys D 4:1346–1357

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by a Multidisciplinary University Research Initiative (MURI) grant from the Office of Naval Research. Computational support is provided by National Energy Research Scientific Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rampi Ramprasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Huan, T.D., Quintero, Y.C. et al. Charge injection barriers at metal/polyethylene interfaces. J Mater Sci 51, 506–512 (2016). https://doi.org/10.1007/s10853-015-9369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9369-2

Keywords

Navigation