Skip to main content

Advertisement

Log in

High-strength mullite fibers reinforced ZrO2–SiO2 aerogels fabricated by rapid gel method

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A rapid gelation process is adopted to fabricate mullite fibers-reinforced ZrO2–SiO2 (M/ZrO2–SiO2) aerogels. The short-cut mullite fibers are introduced into ZrO2–SiO2 sol via aging and supercritical drying, and the epoxides are used as gelation accelerators. The as-prepared M/ZrO2–SiO2 aerogels have a three-dimensional reticulated porous structure similar to those of pure ZrO2–SiO2 aerogels observed by scanning electron microscopy, which indicates that the addition of fibers does not obviously affect the morphology of aerogels. It is observed that the mullite fibers disperse in the aerogels homogeneously, and fibers combine well with aerogels. M/ZrO2–SiO2 aerogel composites exhibit high compressive strengths up to 0.438 MPa, which indicates that this structure benefits the loading transfer and thus enhances their mechanical properties. Moreover, the thermal conductivity of M/ZrO2–SiO2 aerogel composites is as low as that of the pure ZrO2–SiO2 aerogels (~0.0270 W m−1 K−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng J, Zhang C, Feng J (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Interfaces 3(12):4796–4803

    Article  Google Scholar 

  2. Wang X, Jana SC (2013) Synergistic Hybrid Organic-Inorganic Aerogels. ACS Appl Mater Interfaces 5(13):6423–6429

    Article  Google Scholar 

  3. Hong SK, Yoon MY, Hwang HJ (2011) Fabrication of spherical silica aerogel granules from water glass by ambient pressure drying. J Am Ceram Soc 94(10):3198–3201

    Article  Google Scholar 

  4. Zhao ZQ, Chen DR, Jiao XL (2007) Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: comparison of aerogels prepared by freeze-drying and supercritical CO2 (l) extraction. J Phys Chem 111(50):18738–18743

    Article  Google Scholar 

  5. Sachithanadam M, Joshi SC (2014) High strain recovery with improved mechanical properties of gelatin–silica aerogel composites post-binding treatment. J Mater Sci 49(1):163–179. doi:10.1007/s10853-013-7690-1

    Article  Google Scholar 

  6. Hegde ND, Rao AV (2007) Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process. J Mater Sci 42(16):6965–6971. doi:10.1007/s10853-006-1409-5

    Article  Google Scholar 

  7. Maleki H, Durães L, Portugal A (2014) Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater 197:116–129

    Article  Google Scholar 

  8. Jung SM, Jung HY, Fang W (2014) A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett 14(4):1810–1817

    Article  Google Scholar 

  9. Schiffres SN, Kim KH, Hu L (2012) Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels. Adv Funct Mater 22(24):5251–5258

    Article  Google Scholar 

  10. Bangi UKH, Dhere SL, Rao AV (2010) Influence of various processing parameters on water-glass-based atmospheric pressure dried aerogels for liquid marble purpose. J Mater Sci 45(11):2944–2951. doi:10.1007/s10853-010-4287-9

    Article  Google Scholar 

  11. Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J sol gel sci tech 63(3):315–339

    Article  Google Scholar 

  12. Hayase G, Kugimiya K, Ogawa M (2014) The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A 2(18):6525–6531

    Article  Google Scholar 

  13. Nikel O, Anderson AM, Carroll MK (2011) Effect of uni-axial loading on the nanostructure of silica aerogels. J Non-cryst Solids 357(16):3176–3183

    Article  Google Scholar 

  14. Xiong R, Li XL, He J (2014) Thermal stability of ZrO2–SiO2 aerogel modified by Fe(III) ion. J Sol-Gel Sci Tech 72(3):496–501

    Article  Google Scholar 

  15. James BM, Edmond IK (1996) Acidic properties of silica-containing mixed oxide aerogels: preparation and characterization of zirconia-silica and comparison to titania-silica. J Catal 159(1):58–68

    Article  Google Scholar 

  16. James BM, Edmond IK (1997) Control of mixed oxide textural and acidic properties by the sol-gel method. J Catal 35(3):269–292

    Google Scholar 

  17. Chang KJ, Wang YZ, Peng KC (2014) Preparation of silica aerogel/polyurethane composites for the application of thermal insulation. J Polym Res 21(1):1–9

    Article  Google Scholar 

  18. Gupta N, Ricci W (2008) Processing and compressive properties of aerogel/epoxy composites. J Mater Process Tech 198(1):178–182

    Article  Google Scholar 

  19. Silveira F, Brambilla R, da Silveira NP (2010) Effect of textural characteristics of Supported metallocenes on ethylene polymerization. J Mater Sci 45(7):1760–1768. doi:10.1007/s10853-009-4153-9

    Article  Google Scholar 

  20. Kim CY, Lee JK, Kim BI (2008) Synthesis and pore analysis of aerogel–glass fiber composites by ambient drying method. Colloid Surf A 313:179–182

    Article  Google Scholar 

  21. Buisson P, Pierre AC (2006) Immobilization in quartz fiber felt reinforced silica aerogel improves the activity of lipase in organic solvents. J Mol Catal B Enzym 39(1):77–82

    Article  Google Scholar 

  22. Li XL, Wang QP, Li HL (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol-Gel Sci Tech 67(3):646–653

    Article  Google Scholar 

  23. Gash AE, Satcher JH, Simpson RL (2004) Monolithic nickel (II)-based aerogels using an organic epoxide: the importance of the counterion. J Non-crystal Solids 350:145–151

    Article  Google Scholar 

  24. Baumann TF, Kucheyev SO, Gash AE (2005) Facile synthesis of a crystalline, high-surface-area sno2 aerogel. Adv Mater 17(12):1546–1548

    Article  Google Scholar 

  25. Davis M, Hung-Low F, Hikal WM (2013) Enhanced photocatalytic performance of Fe-doped SnO2 nanoarchitectures under UV irradiation: synthesis and activity. J Mater Sci 48(18):6404–6409. doi:10.1007/s10853-013-7440-4

    Article  Google Scholar 

  26. Kim CE, Yoon JS, Hwang HJ (2009) Synthesis of nanoporous silica aerogel by ambient pressure drying. J Sol-Gel Sci Tech 49(1):47–52

    Article  Google Scholar 

  27. May M, Navarrete J, Asomoza M (2007) Tailored mesoporous alumina prepared from different aluminum alkoxide precursors. J Porous Mater 14(2):159–164

    Article  Google Scholar 

  28. Wang J, Gloram PR (2001) Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J Porous Mater 8(2):159–165

    Article  Google Scholar 

  29. Li L, Yalcin B, Nguyen BN (2009) Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Inter 1(11):2491–2501

    Article  Google Scholar 

  30. Ryu J. Flexible aerogel superinsulation and its manufacture: U.S. Patent 6,068,882[P]. 2000-5-30

Download references

Acknowledgements

We acknowledge the funding supports from National Natural Science Foundation of China (Grant No.: 51202157), Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.: 14JCQNJC02800), and Independent Innovation Foundation of Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolei Li or Dong Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Li, X., Su, D. et al. High-strength mullite fibers reinforced ZrO2–SiO2 aerogels fabricated by rapid gel method. J Mater Sci 50, 7488–7494 (2015). https://doi.org/10.1007/s10853-015-9308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9308-2

Keywords

Navigation