Skip to main content
Log in

Structure-reinforcement correlation and chain dynamics in graphene oxide and Laponite-filled epoxy nanocomposites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work attempts at a relative deduction of correlations between structure-reinforcement and chain dynamics in Laponite- and graphene oxide (GO)-dispersed epoxy nanocomposites. The fillers were reasonably well dispersed in the epoxy matrix as revealed by wide-angle X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering studies. The scattering from the nanocomposites exhibited power-law behaviour at low q region with fractal dimensions, implying presence of platelets and tactoids of varying thicknesses. A comprehensive study on the thermomechanical properties of the nanocomposites was made in terms of tensile, dynamic mechanical analysis and flexural and fracture toughness measurements. The studies revealed simultaneous reinforcement as well as toughening effects in the nanocomposites; ~42 and ~34 % increases in flexural strength and mode I fracture toughness (K IC), respectively, with 0.1 wt% GO; and ~25 and ~20 % enhancements in flexural modulus and K IC with 0.1 and 0.3 wt% Laponite, respectively. A unique phenomenon of bimodal distribution of glass transition temperatures was observed as two overlapped peaks in terms of Gaussian contributions in the tan δ versus temperature profiles of the nanocomposites (from dynamic mechanical analysis) and derivative of reversible heat capacity with respect to temperature, dC p,rev/dT versus temperature profiles (from modulated differential scanning calorimetric measurements); as against a single symmetric profile for the unfilled matrix. We attempt to understand the nanofiller-induced alteration in the primary relaxation mechanisms as well as notable reinforcement and toughening effects by invoking the filler/polymer interactions, filler dispersion and fractographic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63

    Article  Google Scholar 

  2. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  3. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  4. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  5. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113

    Article  Google Scholar 

  6. Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19:8856–8860

    Article  Google Scholar 

  7. Donato RK, Donato KZ, Schrekker HS, Matejka L (2012) Tunable reinforcement of epoxy-silica nanocomposites with ionic liquids. J Mater Chem 22:9939–9948

    Article  Google Scholar 

  8. Bortz DR, Heras EG, Martin GI (2012) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45:238–245

    Article  Google Scholar 

  9. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635–9643

    Article  Google Scholar 

  10. Weiping L, Hoa VS, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Comp Sci Technol 65:2364–2373

    Article  Google Scholar 

  11. Lan T, Kaviratna DP, Pinnavaia JT (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater 7:2144–2150

    Article  Google Scholar 

  12. Park JH, Jana SC (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36:2758–2768

    Article  Google Scholar 

  13. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  Google Scholar 

  14. Gojny HF, Wichmann HGM, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Comp Sci Technol 65:2300–2313

    Article  Google Scholar 

  15. Yasmin A, Luo JJ, Daniel MI (2006) Processing of expanded graphite reinforced polymer nanocomposites. Comp Sci Technol 66:1182–1189

    Article  Google Scholar 

  16. Tie L, Pinnavaia JT (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219

    Article  Google Scholar 

  17. Lipinska M, Hutchinson MJ (2012) Elastomeric epoxy nanocomposites: nanostructure and properties. Comp Sci Technol 72:640–646

    Article  Google Scholar 

  18. Wang Z, Thomas JP (1998) Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem Mater 10:1820–1826

    Article  Google Scholar 

  19. Isil I, Yilmazer U, Bayram G (2003) Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterisation. Polymer 44:6371–6377

    Article  Google Scholar 

  20. Zaman I, Le HQ, Kuan CH, Kawashima N, Lee L, Gerson A, Ma J (2011) Interface-tuned epoxy/clay nanocomposites. Polymer 52:497–504

    Article  Google Scholar 

  21. Yasmin A, Abot LJ, Daniel MI (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scr Mater 49:81–86

    Article  Google Scholar 

  22. Launey ME, Ritchie RO (2009) On the fracture toughness of advanced materials. Adv Mater 21:2103–2110

    Article  Google Scholar 

  23. Liu W, Hoa VS, Pugh M (2005) Organoclay-modified high performance epoxy nanocomposites. Comp Sci Technol 65:307–316

    Article  Google Scholar 

  24. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7:10294–10329

    Article  Google Scholar 

  25. Liao YH, Marietta TO, Liang Z, Zhang C, Wang B (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A 385:175–181

    Article  Google Scholar 

  26. Tak GK, Sue HJ. Preparation and mechanical properties of epoxy-clay nanocomposites. ACS Spring Meeting, 2000 (San Francisco, USA)

  27. McIntyre S, Kaltzakorta I, Liggat JJ, Pethrick RA, Rhoney I (2005) Influence of the epoxy structure on the physical properties of epoxy resin nanocomposites. Ind Eng Chem Res 44:8573–8579

    Article  Google Scholar 

  28. Khare KS, Khare R (2013) Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions. J Phys Chem B 117:7444–7454

    Article  Google Scholar 

  29. Allaoui A, El Bounia NE (2009) How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?–a review. Expr Polym Lett 3:588–594

    Article  Google Scholar 

  30. Gonzalez DJ, Gonzalez M, Anson CA, Diez PMA, Gomez AM, Martinez MT (2011) Effect of various aminated single-walled carbon nanotubes on the epoxy cross-linking reactions. J Phys Chem C 115:7238–7248

    Article  Google Scholar 

  31. Chakraborty AK, Plyhm T, Barbezat M, Necola A, Terras GP (2011) Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion. J Nanopart Res 13:6493–6506

    Article  Google Scholar 

  32. Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17:1551

    Article  Google Scholar 

  33. Wang S, Liang Z, Gonnet P, Liao YH, Wang B, Zhang C (2007) Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Adv Funct Mater 17:87–92

    Article  Google Scholar 

  34. Putz WK, Palmeri JM, Cohn BR, Andrews R, Brinson CL (2008) Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 41:6752–6756

    Article  Google Scholar 

  35. Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWNT/epoxy composites. Carbon 46:320–328

    Article  Google Scholar 

  36. Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules 46:2833–2841

    Article  Google Scholar 

  37. Patro TU, Wagner HD (2011) Layer-by-layer assembled PVA/laponite multilayer free-standing films and their mechanical and thermal properties. Nanotechnology 22:455706

    Article  Google Scholar 

  38. Ruggerone R, Plummer JGC, Herrera NN, Lami BE, Manson EJA (2009) Highly filled polystyrene-laponite nanocomposites prepared by emulsion polymerization. Eur Polym J 45:621–629

    Article  Google Scholar 

  39. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  40. Hummers JWS, Offeman RE (1958) Preparation of Graphene Oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  41. Kaya ED (2006) Development of layered silicate/epoxy nanocomposites. PhD Dissertation, Izmir Institute of Technology

  42. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of Graphene Nanocomposites: a Review. Comp Sci Technol 72:1459–1476

    Article  Google Scholar 

  43. Martin JE, Hurd AJ (1987) Scattering from fractals. J Appl Crystallogr 20:61–78

    Article  Google Scholar 

  44. Hurd AJ, Schaefer DW, Smith DM, Ross SB, Le MA, Spooner S (1989) Surface areas of fractally rough particles studied by scattering. Phys Rev B 39:9742

    Article  Google Scholar 

  45. Karlsson C, Best AS, Swenson J, Kohlbrecher J, Borjesson L (2005) A SANS study of 3PEG-LiClO4-TiO2 nanocomposite polymer electrolytes. Macromolecules 38:6666–6671

    Article  Google Scholar 

  46. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40:8501–8517

    Article  Google Scholar 

  47. Miller SG, Bauer JL, Maryanski MJ, Heimann PJ, Barlow JP, Gosau JM, Allred RE (2010) Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Comp Sci Technol 70:1120–1125

    Article  Google Scholar 

  48. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  49. Chen B, Evans JRG (2006) Elastic moduli of clay platelets. Scr Mater 54:1581–1585

    Article  Google Scholar 

  50. Auad ML, Nutt SR, Pettarin V, Frontini PM (2007) Synthesis and properties of epoxy-phenolic clay nanocomposites. Exp Polym Lett 1:629–639

    Article  Google Scholar 

  51. Rath SK, Aswal VK, Sharma C, Joshi K, Patri M, Harikrishnan G, Khakhar DV (2014) Mechanistic origins of multi-scale reinforcements in segmented polyurethane-clay nanocomposites. Polymer 55:5198–5210

    Article  Google Scholar 

  52. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007) The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polym J 43:3113–3127

    Article  Google Scholar 

  53. Kourkoutsaki T, Logakis E, Kroutilova I, Matejka L, Nedbal J, Pissis P (2009) Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites. J Appl Polym Sci 113:2569–2582

    Article  Google Scholar 

  54. Krzeminski M, Molinari M, Troyon M, Coqueret X (2010) Characterization by atomic force microscopy of the nanoheterogeneities produced by the radiation-induced cross-linking polymerization of aromatic diacrylates. Macromolecules 43:8121–8127

    Article  Google Scholar 

  55. Krzeminski M, Molinari M, Troyon M, Coqueret X (2010) Calorimetric characterization of the heterogeneities produced by the radiation-induced cross-linking polymerization of aromatic diacrylates. Macromolecules 43:3757–3763

    Article  Google Scholar 

  56. Kong X, Narine SS (2008) Physical Properties of Sequential Interpenetrating Polymer Networks Produced from Canola Oil-Based Polyurethane and Poly(methyl methacrylate). Biomacromolecules 9:1424–1433

    Article  Google Scholar 

  57. Rath SK, Chavan JG, Sasane S, Srivastava A, Patri M, Samui AB, Chakraborty BC, Sawant SN (2009) Coatings of PDMS-modified epoxy via urethane linkage: segmental correlation length, phase morphology, thermomechanical and surface behaviour. Prog Org Coat 65:366–374

    Article  Google Scholar 

  58. Patil PN, Rath SK, Sharma SK, Sudarshan K, Maheshwari P, Patri M, Praveen S, Khandelwal P, Pujari PK (2013) Free volumes and structural relaxations in diglycidyl ether of bisphenol-A based epoxy–polyether amine networks. Soft Matter 9:3589–3599

    Article  Google Scholar 

  59. Jin J, Song M, Yao KJ (2006) A MTDSC analysis of phase transition in polyurethane–organoclay nanocomposites. Thermochim Acta 447:202–208

    Article  Google Scholar 

  60. Rath SK, Patri M, Khakhar DV (2012) Structure–thermomechanical property correlation of moisture cured poly(urethane-urea)/clay nanocomposite coatings. Prog Org Coat 75:264–273

    Article  Google Scholar 

  61. Zaman I, Phan TT, Kuan HC, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611

    Article  Google Scholar 

  62. Qiu J, Wang S (2010) Enhancing polymer performance through graphene sheets. J Appl Polym Sci 119:3670–3674

    Article  Google Scholar 

Download references

Acknowledgement

TUP would like to thankfully acknowledge lab facilities and financial support from DIAT (DIAT/F/MATE/4845/TUP) and the funding from DST under Fast Track Project for Young Scientist (SB/FT/CS-043/2012). The funding from DRDO–DIAT program on nanomaterials by ER-IPR, DRDO is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Umasankar Patro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, D.K., Rath, S.K., Kumar, A. et al. Structure-reinforcement correlation and chain dynamics in graphene oxide and Laponite-filled epoxy nanocomposites. J Mater Sci 50, 7458–7472 (2015). https://doi.org/10.1007/s10853-015-9305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9305-5

Keywords

Navigation