Skip to main content
Log in

Transparent nanocellulose-pigment composite films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 18 September 2019

This article has been updated

Abstract

Biodegradable coatings and films of cellulose nanofibers (CNFs) or a combination of CNFs and inorganic fillers, such as clay or calcium carbonate (CaCO3), can provide a replacement for non-biodegradable plastic coatings as barrier layers in packaging boards. In this work, transparent composite films were prepared from CNFs of Pinus radiata and Eucalyptus using different amounts of clay and CaCO3 as fillers. The impact of raw material (softwood vs. hardwood), TEMPO oxidation levels and filler type (clay vs. CaCO3) on film properties was studied. Pinus radiata CNF films had superior mechanical properties to Eucalyptus CNF films, but no significant differences were observed in the barrier and optical properties. Clay seemed to work better as filler compared to CaCO3, in terms of its impact on film properties. Composite films with CaCO3 as filler were highly brittle with inferior properties to clay-CNF films, and an uneven distribution and agglomeration of the CaCO3 mineral particles was evident in SEM images. Based on the results, clay as filler in CNF coatings is preferred for targeting packaging board applications. Rheological characterisation of the CNF suspensions revealed shear-thinning behaviour, with the CNF from Eucalyptus having higher viscosities and lower power-law indices when compared to the CNF from P. radiata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 18 September 2019

    In the original version of this article, one of the concentrations of CNF suspensions has been reported to be 0.01% under the results and discussion of rheology measurements. It should have been 0.1% instead.

  • 18 September 2019

    In the original version of this article, one of the concentrations of CNF suspensions has been reported to be 0.01% under the results and discussion of rheology measurements. It should have been 0.1% instead.

References

  1. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  Google Scholar 

  2. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  Google Scholar 

  3. Houga C, Meins JL, Borsali R, Taton D, Gnanou Y (2007) Synthesis of ATRP-induced dextran-b-polystyrene diblock copolymers and preliminary investigation of their self-assembly in water. Chem Commun 29:3063–3065

    Article  Google Scholar 

  4. Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32

    Article  Google Scholar 

  5. Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117

    Article  Google Scholar 

  6. Stepan AM, Ansari F, Berglund L, Gatenholm P (2014) Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Compos Sci Technol 98:72–78

    Article  Google Scholar 

  7. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  8. Hamedi MM, Hajian A, Fall AB, Håkansson K, Salajkova M et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476

    Article  Google Scholar 

  9. Kumar V, Bollström R, Yang A, Chen Q, Chen G et al (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456

    Article  Google Scholar 

  10. Sasso C, Zeno E, Petit-Conil M, Chaussy D, Belgacem MN et al (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295:934–941

    Article  Google Scholar 

  11. Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628

    Article  Google Scholar 

  12. Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356

    Article  Google Scholar 

  13. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  Google Scholar 

  14. Hansen NL, Blomfeldt TJ, Hedenqvist M, Plackett D (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031

    Article  Google Scholar 

  15. Kurihara T, Isogai A (2014) Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 21:291–299

    Article  Google Scholar 

  16. Lee K, Tammelin T, Schulfter K, Kiiskinen H, Samela J et al (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078–4086

    Article  Google Scholar 

  17. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234

    Article  Google Scholar 

  18. Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø et al (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19:705–711

    Article  Google Scholar 

  19. Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    Article  Google Scholar 

  20. Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038

    Article  Google Scholar 

  21. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305

    Article  Google Scholar 

  22. Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504

    Article  Google Scholar 

  23. Minelli M (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1):67–75

    Article  Google Scholar 

  24. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647

    Article  Google Scholar 

  25. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  Google Scholar 

  26. Fang Z, Zhu H, Yuan Y, Ha D, Zhu S et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773

    Article  Google Scholar 

  27. Hu L, Zheng G, Yao J, Liu N, Weil B et al (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518

    Article  Google Scholar 

  28. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  Google Scholar 

  29. Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ et al (2013) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6:2105–2111

    Article  Google Scholar 

  30. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  Google Scholar 

  31. Wu C, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932

    Article  Google Scholar 

  32. Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources 6:4370–4388

    Google Scholar 

  33. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  Google Scholar 

  34. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  Google Scholar 

  35. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  Google Scholar 

  36. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  Google Scholar 

  37. Paunonen S (2013) Strength and barrier enhancements of composites and packaging boards by nanocelluloses—a literature review. Nord Pulp Pap Res J 28:165–181

    Article  Google Scholar 

  38. Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439

    Article  Google Scholar 

  39. Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571

    Article  Google Scholar 

  40. Chen P, Yu H, Liu Y, Chen W, Wang X et al (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157

    Article  Google Scholar 

  41. Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740

    Article  Google Scholar 

  42. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M et al (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819

    Article  Google Scholar 

  43. Pahimanolis N, Hippi U, Johansson L, Saarinen T, Houbenov N et al (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212

    Article  Google Scholar 

  44. Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145

    Article  Google Scholar 

  45. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  Google Scholar 

  46. Saarinen T, Lille M, Seppälä J (2009) Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Annu Trans Nord Rheol Soc 17:121–128

    Google Scholar 

  47. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  48. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  Google Scholar 

  49. Liu J, Korpinen R, Mikkonen K, Willför S, Xu C (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21:2587–2598

    Article  Google Scholar 

  50. Moberg T, Rigdahl M, Stading M, Levenstam Bragd E (2014) Extensional viscosity of microfibrillated cellulose suspensions. Carbohydr Polym 102:409–412

    Article  Google Scholar 

  51. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  Google Scholar 

  52. Dang Z, Zhang J, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70:310–317

    Article  Google Scholar 

  53. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  Google Scholar 

  54. Herrera-Alonso JM, Marand E, Little JC, Cox SS (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: effect of processing conditions. J Membr Sci 337:208–214

    Article  Google Scholar 

  55. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  Google Scholar 

Download references

Acknowledgement

Bioforest S.A. is gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honorato, C., Kumar, V., Liu, J. et al. Transparent nanocellulose-pigment composite films. J Mater Sci 50, 7343–7352 (2015). https://doi.org/10.1007/s10853-015-9291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9291-7

Keywords

Navigation