Skip to main content
Log in

Relationship between microstructure and mechanical properties in acid-treated carbon nanotube-reinforced alumina composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alumina composites reinforced with multiwalled carbon nanotubes (MWCNTs) at up to 3.7 vol% are prepared by a precursor method followed by a spark plasma sintering. We systematically and quantitatively investigate the effects of acid-treatment time of the MWCNTs on not only bending strength and fracture toughness of the composites but also on the mechanical strength and dispersibility of the MWCNTs, the grain size of the alumina matrix, and the interfacial strength between MWCNT and alumina. The main objective of this study is to evaluate how these parameters influence the mechanical properties with the aid of multiple regression analysis. We demonstrate that the matrix grain size, the mechanical strength of the MWCNTs, and the interfacial strength have little impact on the mechanical properties for the composites prepared in this study. On the other hand, the dispersibility of MWCNTs has the significant influence on the mechanical properties. Both the dispersibility of the MWCNTs and the mechanical properties of the composites increase as the acid-treatment time increases up to 2 h at low MWCNT content (0.9 vol%). Conversely, at a higher amount of MWCNTs, the degradation in the mechanical properties is shown to be associated with the deterioration of MWCNTs’ dispersibility. As MWCNT agglomerates are anticipated to act as imperfections, they may override the effects of the strength of MWCNTs, matrix grain size, and interfacial strength. By means of the multiple regression analysis, we quantitatively show that improving MWCNTs’ dispersibility is one of the most important factors in enhancing the mechanical properties of MWCNT/alumina composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555

    Article  Google Scholar 

  2. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Article  Google Scholar 

  3. Mielke SL, Troya D, Zhang S, Li JL, Xiao S, Car R, Ruoff RS (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420

    Article  Google Scholar 

  4. Barber AH, Andrews R, Schadler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87(20):203106

    Article  Google Scholar 

  5. Barber AH, Kaplan-Ashiri I, Cohen SR et al (2005) Stochastic strength of nanotubes: an appraisal of available data. Compos Sci Technol 65:2380–2384

    Article  Google Scholar 

  6. Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3:626–631

    Article  Google Scholar 

  7. Yamamoto G, Suk JW, An JH, Piner RD, Hashida T, Takagi T, Ruoff RS (2010) The influence of nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam Relat Mater 19(7–9):748–751

    Article  Google Scholar 

  8. Yamamoto G, Shirasu K, Nozaka Y, Sato Y, Takagi T, Hashida T (2014) Structure-property relationships in thermally annealed multi-walled carbon nanotubes. Carbon 66:219–226

    Article  Google Scholar 

  9. Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104(5):2089–2095

    Article  Google Scholar 

  10. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    Article  Google Scholar 

  11. Palaci I, Fedrigo S, Brune H, Kinke C, Chen M, Riedo E (2005) Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett 94(17):175502

    Article  Google Scholar 

  12. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  13. Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44(8):1934–1951. doi:10.1007/s10853-009-3262-9

    Article  Google Scholar 

  14. Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020

    Article  Google Scholar 

  15. Laurent Ch, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18:2005–2013

    Article  Google Scholar 

  16. Peigney A, Laurent Ch, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683

    Article  Google Scholar 

  17. Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42

    Article  Google Scholar 

  18. Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) Borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Eur Ceram Soc 25(9):1515–1523

    Article  Google Scholar 

  19. Ye F, Liu LM, Wang YJ, Zhou Y, Peng B, Meng QC (2006) Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass-ceramic composites. Scr Mater 55(10):911–914

    Article  Google Scholar 

  20. Jiang DT, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube toughened alumina-based nanocomposite. Scr Mater 56:959–962

    Article  Google Scholar 

  21. Yamamoto G, Omori M, Yokomizo K, Hashida T (2008) Mechanical properties and structural characterization of carbon nanotube/alumina composites prepared by precursor method. Diam Relat Mater 17(7–10):1554–1557

    Article  Google Scholar 

  22. Yamamoto G, Omori M, Yokomizo K, Hashida T, Adachi K (2008) Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method. Mater Sci Eng, B 148(1–3):265–269

    Article  Google Scholar 

  23. Yamamoto G, Omori M, Hashida T, Kimura H (2008) A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19(31):315708

    Article  Google Scholar 

  24. Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater 58(10):906–909

    Article  Google Scholar 

  25. Otieno G, Koos AA, Dillon F, Wallwork A, Grobert N, Todd RI (2010) Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol-gel processing. Carbon 48(8):2212–2217

    Article  Google Scholar 

  26. Inam F, Yan HX, Jayaseelan DD, Pejis T, Reece MJ (2010) Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering. J Eur Ceram Soc 30(2):153–157

    Article  Google Scholar 

  27. Ahmad I, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2009) Carbon nanotube toughened aluminium oxide nanocomposites. J Eur Ceram Soc 30:865–873

    Article  Google Scholar 

  28. Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, Boccaccini AR (2011) Carbon nanotubes: do they toughen brittle matrices? J Mater Sci 46(14):4770–4779. doi:10.1007/s10853-011-5387-x

    Article  Google Scholar 

  29. Ueda N, Yamakami T, Yamaguchi T, Kitajima K, Usui Y, Aoki K, Endo M, Saito N, Taruta S (2012) Microstructure development and fracture toughness of acid-treated carbon nanofibers/alumina composites. J Ceram Soc Jpn 120(1408):560–568

    Article  Google Scholar 

  30. Estili M, Sakka Y, Kawasaki A (2013) Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al2O3 ceramic by multiwall-type failure of a high loading of carbon nanotubes. Nanotechnology 24(15):155702

    Article  Google Scholar 

  31. Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhy YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70(8):1199–1206

    Article  Google Scholar 

  32. Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644

    Article  Google Scholar 

  33. Ning J, Zhang J, Pan Y, Guo J (2004) Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites. Ceram Int 30:63–67

    Article  Google Scholar 

  34. Morisada Y, Miyamoto Y, Takaura Y (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Metals Hard Mater 25:322–327

    Article  Google Scholar 

  35. Peigney A, Garcia F, Estournès C et al (2010) Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites. Carbon 48:1952–1960

    Article  Google Scholar 

  36. Wang WL, Yamamoto G, Shirasu K et al (2013) Microstructure and mechanical properties of multi-walled carbon nanotube/alumina composites prepared by a novel flocculation method. In: Proceedings of ECCM 2014: 16th European conference on composite materials, Seville, Spain

  37. Kelly A, Tyson WR (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350

    Article  Google Scholar 

  38. Curtin WA (1991) Theory of mechanical properties of ceramic-matrix composites. J Am Ceram Soc 74(11):2837–2845

    Article  Google Scholar 

  39. Li L, Xia ZH, Curtin WA, Yang YQ (2009) Molecular dynamics simulations of interfacial sliding in carbon-nanotube/diamond nanocomposites. J Am Ceram Soc 92:2331–2336

    Article  Google Scholar 

  40. Li L, Niu JB, Xia ZH et al (2011) Nanotube/matrix interfacial friction and sliding in composites with an amorphous carbon matrix. Scr Mater 65:1014–1017

    Article  Google Scholar 

  41. Nozaka Y, Wang W, Shirasu K et al (2014) Inclined slit-based pullout method for determining interfacial strength of multi-walled carbon nanotube–alumina composites. Carbon 78:439–445

    Article  Google Scholar 

  42. Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612

    Article  Google Scholar 

  43. Yamamoto G, Shirasu K, Nozaka Y et al (2014) Microstructure–property relationships in pressureless-sintered carbon nanotube alumina composites. Mater Sci Eng A 617:179–186

    Article  Google Scholar 

  44. Xia Z, Riester L, Curtin W et al (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52:931–944

    Article  Google Scholar 

  45. Nozaka Y, Yamamoto G, Shirasu K et al (2013) Evaluation of mechanical properties and microstructures of multi-walled carbon nanotube/alumina composites prepared by pressureless sintering. Trans Jpn Soc Mech Eng Part A 79:764–768

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. T. Miyazaki of the Technical Division, the School of Engineering, Tohoku University, for technical assistance in the TEM analysis. Dr. M. Watanabe, Industry Creation Hatchery Center, Tohoku University, is gratefully appreciated for his help in multiple regression analysis. This research was partially supported by the Grant-in-Aid for Scientific Research (S) 21226004 and Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) 243582 and 2402358. This work was performed under the inter-university cooperative research program of the Advanced Research Center of Metallic Glasses, the Institute for Materials Research, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Shirasu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirasu, K., Yamamoto, G., Nozaka, Y. et al. Relationship between microstructure and mechanical properties in acid-treated carbon nanotube-reinforced alumina composites. J Mater Sci 50, 6688–6699 (2015). https://doi.org/10.1007/s10853-015-9223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9223-6

Keywords

Navigation