Skip to main content
Log in

Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high-density polyethylene (HDPE) nanocomposites were prepared by using graphite nanosheets (GNS) and expanded graphite (EG), followed by foaming with subcritical CO2 used as an environmentally benign and nonflammable foaming agent. The partially exfoliated GNS and EG endow the prepared microcellular nanocomposite foams with high electrical conductivity, improved mechanical properties, as well as density reduction up to ca. 20 %. Interestingly, insulator-to-semiconductor transition of microcellular nanocomposite foams shifts to lower nanofiller content compared to that of bulk nanocomposites. Whether the nanofiller is GNS or EG, its incorporation leads to uniformly small cells, resulting in a remarkable enhancement in ductility without sacrificing toughness. It has demonstrated that foaming of HDPE nanocomposites with EG or GNS provides tough and lightweight microcellular foams, exhibiting the potential for use in conductive high-performance lightweight nanocomposite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jacobs LJ, Kemmere MF, Keurentjes JT (2008) Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chem 10(7):731–738

    Article  Google Scholar 

  2. Fugetsu B et al (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46(9):1256–1258

    Article  Google Scholar 

  3. Im JS, Kim JG, Lee Y-S (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47(11):2640–2647

    Article  Google Scholar 

  4. Zhang H-B et al (2011) Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924

    Article  Google Scholar 

  5. Dehsari HS et al (2014) Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv 4(98):55067–55076

    Article  Google Scholar 

  6. Xu K, Chen G, Qiu D (2013) Convenient construction of poly (3, 4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem A 1(40):12395–12399

    Article  Google Scholar 

  7. Zhang Z et al (2015) Template‐Directed In Situ Polymerization Preparation of Nanocomposites of PEDOT: PSS‐Coated Multi‐Walled Carbon Nanotubes with Enhanced Thermoelectric Property. Chem 10(1):149–153

    Google Scholar 

  8. Xu XB et al (2007) Ultralight conductive carbon-nanotube–polymer composite. Small 3(3):408–411

    Article  Google Scholar 

  9. Thomassin J-M et al (2008) Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem 18(7):792–796

    Article  Google Scholar 

  10. Yang Y et al (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134

    Article  Google Scholar 

  11. Ling J et al (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684

    Article  Google Scholar 

  12. Ye L et al (2009) Synthesis and characterization of expandable graphite–poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab 94(6):971–979

    Article  Google Scholar 

  13. Li Y et al (2014) Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water–blown semi–rigid polyurethane foam. J Appl Polym Sci 131(3):39885

    Google Scholar 

  14. Sorrentino L et al (2012) Mechanical behavior of solid and foamed polyester/expanded graphite nanocomposites. J Cell Plast 48(4):355–368

    Google Scholar 

  15. Celzard A et al (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D 33(23):3094

    Article  Google Scholar 

  16. Zheng W, Wong S-C (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63(2):225–235

    Article  Google Scholar 

  17. Zeng C et al (2003) Polymer–clay nanocomposite foams prepared using carbon dioxide. Adv Mater 15(20):1743–1747

    Article  Google Scholar 

  18. Peacock A (2000) Handbook of Polyethylene: Structures, Properties, and Applications. Taylor & Francis, New York

    Google Scholar 

  19. Pisharath S, Wong SC (2003) Development of the morphology and crystalline state due to hybridization of reinforced toughened nylon containing a liquid-crystalline polymer. J Polym Sci Part B 41(6):549–559

    Article  Google Scholar 

  20. Zhang C et al (2000) Morphology, crystallization and melting behaviors of isotactic polypropylene/high density polyethylene blend: effect of the addition of short carbon fiber. J Mater Sci 35(3):673–683. doi:10.1021/ma071025m

    Article  Google Scholar 

  21. Hoang T et al (2014) Tensile, rheological properties, thermal stability, and morphology of ethylene vinyl acetate copolymer/silica nanocomposites using EVA-g-maleic anhydride. J Compos Mater 48(4):505–511

    Article  Google Scholar 

  22. Wilson R et al (2012) Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites. J Phys Chem C 116(37):20002–20014

    Article  Google Scholar 

  23. Jolfaei AF et al (2015) Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polym Bull 72(5):1127–1144

    Article  Google Scholar 

  24. Bidsorkhi HC et al (2015) Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites. J Mater Sci 50(8):3237–3245. doi:10.1007/s10853-015-8891-6

    Article  Google Scholar 

  25. Li YC, Chen GH (2007) HDPE/expanded graphite nanocomposites prepared via masterbatch process. Polym Eng Sci 47(6):882–888

    Article  Google Scholar 

  26. Wang L, Chen G (2010) Dramatic improvement in mechanical properties of GNs-reinforced HDPE nanocomposites. J Appl Polym Sci 116(4):2029–2034

    Google Scholar 

  27. Young RJ, Lovell PA (2011) Introduction to Polymers, 3rd edn. Taylor & Francis, New York

    Google Scholar 

  28. Aboutalebi SH et al (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988

    Article  Google Scholar 

  29. She Y, Chen G, Wu D (2007) Fabrication of polyethylene/graphite nanocomposite from modified expanded graphite. Polym Int 56(5):679–685

    Article  Google Scholar 

  30. Li J et al (2007) Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon 45(4):744–750

    Article  Google Scholar 

  31. Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254. doi:10.1007/s10853-015-8891-6

    Article  Google Scholar 

  32. Lee LJ et al (2005) Polymer nanocomposite foams. Compos Sci Technol 65(15):2344–2363

    Article  Google Scholar 

  33. Nam PH et al (2002) Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci 42(9):1907–1918

    Article  Google Scholar 

  34. Taki K et al (2004) Visual observation of CO2 foaming of polypropylene-clay nanocomposites. Polym Eng Sci 44(6):1004–1011

    Article  Google Scholar 

  35. Li Y et al (2011) Numerical simulation of polypropylene foaming process assisted by carbon dioxide: bubble growth dynamics and stability. Chem Eng Sci 66(16):3656–3665

    Article  Google Scholar 

  36. Hodlur R, Rabinal M (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90:160–165

    Article  Google Scholar 

  37. Realinho V et al (2011) Influence of nanoclay concentration on the CO2 diffusion and physical properties of PMMA montmorillonite microcellular foams. Ind Eng Chem Res 50(24):13819–13824

    Article  Google Scholar 

  38. Tomasko DL et al (2009) Development of CO2 for polymer foam applications. J Supercrit Fluids 47(3):493–499

    Article  Google Scholar 

  39. Zhao Y et al (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67(11):2528–2534

    Article  Google Scholar 

  40. Lu J et al (2006) The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites. Eur Polymer J 42(5):1015–1021

    Article  Google Scholar 

  41. Van der Putten D et al (1992) Evidence for superlocalization on a fractal network in conductive carbon-black–polymer composites. Phys Rev Lett 69(3):494

    Article  Google Scholar 

  42. Calberg C et al (1999) Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J Phys D Appl Phys 32(13):1517

    Article  Google Scholar 

  43. Stauffer D, Aharony A (1991) Introduction to percolation theory. Taylor & Francis, New York

    Google Scholar 

  44. Grimmett G (1999) What is percolation?. Springer, Berlin

    Book  Google Scholar 

  45. Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52(17):1465

    Article  Google Scholar 

  46. Balberg I (1986) Excluded-volume explanation of Archie’s law. Phys Rev B 33(5):3618

    Article  Google Scholar 

  47. Zheng W, Wong S-C, Sue H-J (2002) Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43(25):6767–6773

    Article  Google Scholar 

  48. Zhai W et al (2012) The orientation of carbon nanotubes in poly (ethylene-co-octene) microcellular foaming and its suppression effect on cell coalescence. Polym Eng Sci 52(10):2078–2089

    Article  Google Scholar 

  49. Ezquerra TA et al (2001) Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Compos Sci Technol 61(6):903–909

    Article  Google Scholar 

  50. Hu Z, Chen G (2014) Aqueous dispersions of layered double hydroxide/polyacrylamide nanocomposites: preparation and rheology. J Mater Chem A 2(33):13593–13601

    Article  Google Scholar 

  51. Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26(34):5950–5956

    Article  Google Scholar 

  52. Gavgani JN et al (2014) Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties. J Appl Polym Sci 131(23):41158

    Article  Google Scholar 

  53. Bidsorkhi HC et al (2014) Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Testing 37:117–122

    Article  Google Scholar 

  54. Dasari A, Yu Z-Z, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16):4112–4121

    Article  Google Scholar 

  55. Collias DI, Baird DG, Borggreve RJ (1994) Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18):3978–3983

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Baseghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baseghi, S., Garmabi, H., Gavgani, J.N. et al. Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties. J Mater Sci 50, 4994–5004 (2015). https://doi.org/10.1007/s10853-015-9048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9048-3

Keywords

Navigation