Skip to main content
Log in

PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, chalcopyrite CuFeS2 with sheet-like or rod-like morphology has been synthesized by solvothermal reaction route in the presence of poly(vinylpyrrolidone) (PVP). The concentration of PVP has significant influences on the morphology of CuFeS2 nanocrystals. With the increasing concentrations of PVP, the sheet morphology of CuFeS2 becomes more uniform. Meanwhile, the average dimensions of CuFeS2 sheets are reduced and small CuFeS2 nanoparticles are clearly decreased. When the molar ratio of CuFeS2 to PVP is 1:2, the shape of CuFeS2 changes to rod-like, which is composed of CuFeS2 sheets. Considering the influence of uniformity and shape of CuFeS2 nanocrystals, the CuFeS2 nanocrystals with different molar ratios of PVP have been used as active component to prepare anode for Li-ion batteries. The Li-ion battery using CuFeS2 nanocrystals with the molar ratio of 1:2 to PVP shows the highest reversible specific capacity of ~519 mAh/g after 50 cycles at a current density of 100 mA/g and maintains a specific capacity of ~400 mAh/g at a density of 1000 mA/g. The results demonstrate that the PVP-assisted CuFeS2 electrodes are promising candidates for use as Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamajima T, Kambara T, Gondaira KI, Oguchi T (1981) Optically detected insulator-metal transition in CuFeS2. Phys Rev B 24:3349–3353

    Article  Google Scholar 

  2. Hu JQ, Lu QY, Deng B, Tang KB, Qian YT, Zhou GE, Liu XM (2003) Solvothermal route to semiconductor nanowires. Adv Mater 15:448–450

    Article  Google Scholar 

  3. Pradhan SK, Ghosh B, Samanta LK (2006) Mechano synthesis of nanocrystalline CuFeS2 chalcopyrite. Phys E (Amsterdam, Neth.) 33:144–146

    Article  Google Scholar 

  4. Ding W, Wang X, Peng HF, Hu LN (2013) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater Chem Phys 137:872–876

    Article  Google Scholar 

  5. Ai CC, Yin MC, Wang CW, Sun JT (2004) Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium ion batteries. J Mater Sci 39:1077–1079. doi:10.1023/B:JMSC.0000012948.27433.83

    Article  Google Scholar 

  6. Zhang Z, Zhou C, Liu Y (2013) CuSbS2 nanobricks as electrode materials for lithium ion batteries. Int J Electrochem Sci 8:10059–10067

    Google Scholar 

  7. Hsiang Y, Wang A, Bao NZ, Gupta A (2010) Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci 12:387–390

    Article  Google Scholar 

  8. Hu JQ, Lu QY, Deng B, Tang KB (1999) A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorg Chem Commun 2:569–571

    Article  Google Scholar 

  9. Wang MX, Wang LS, Yue GH, Wang X, Yan PX, Peng DL (2009) Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater Chem Phys 115:147–150

    Article  Google Scholar 

  10. Hitchman A, Smith SGH, Nam YJ (2013) The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 90:410–416

    Article  Google Scholar 

  11. Tejamaya M, Römer I, Merrifield RC (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017

    Article  Google Scholar 

  12. Ucar N, Demirsoy N, Onen A, Karacan I, Kizildag N, Eren O, Vurur OF, Sezer E, Ustamehmetoglu B (2014) The effect of reduction methods and stabilizer (PVP) on the properties of polyacrylonitrile (PAN) composite nanofibers in the presence of nanosilver. J Mater Sci 50:1–10. doi:10.1007/s10853-014-8748-4

    Article  Google Scholar 

  13. Zhang H, Ren X, Cui ZL (2007) Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. J Cryst Growth 304:206–210

    Article  Google Scholar 

  14. Deivaraj TC, Lala NL, Lee JY (2005) Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 289:402–409

    Article  Google Scholar 

  15. Liang DX, Ma RS, Jiao SH, Pang GS, Feng SH (2012) A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 4:6265–6268

    Article  Google Scholar 

  16. Barkat L, Hamdadou N, Morsli M, Khelil A, Bernède JC (2006) Growth and characterization of CuFeS2 thin films. J Cryst Growth 297:426–431

    Article  Google Scholar 

  17. Ding W, Wang X, Peng HF, Hu LN (2013) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater Chem Phys 137:872–876

    Article  Google Scholar 

  18. Montoro LA, Rosolen JM (2003) Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics 159:233–240

    Article  Google Scholar 

  19. Fang XP, Yu XQ, Liao SF, Shi YF, Hu YS, Wang ZX, Stucky GD, Chen LQ (2012) Lithium storage performance in ordered mesoporous MoS2 electrode material. Microporous Mesoporous Mater 151:418–423

    Article  Google Scholar 

  20. Chen DY, Jia G, Ding B, Ma Y, Qu BH, Chen WX, Lee JY (2013) In-situ nitrogenated graphene-few layer WS2 composites for fast and reversible Li+ storage. Nanoscale 5:7890–7896

    Article  Google Scholar 

  21. Jiu J, Isoda S, Wang F, Adachi M (2006) Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J Phys Chem B 110:2087–2092

    Article  Google Scholar 

  22. Lin YY, Chu TH, Li SS, Chuang CH, Chang CH, Su WF, Chang CP, Chu MW, Chen CW (2009) Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. J Am Chem Soc 131:3644–3649

    Article  Google Scholar 

  23. Chen Y, Song B, Tang X, Lu L, Xue J (2014) Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543

    Article  Google Scholar 

  24. Kobayashi T, Kawasaki N, Kobayashi Y, Shono K, Mita Y, Miyashiro H (2014) A method of separating the capacities of layer and spinel compounds in blended cathode. J Power Sources 245:1–6

    Article  Google Scholar 

  25. Jin S, Deng H, Long D (2011) Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J Power Sources 196:3887–3893

    Article  Google Scholar 

  26. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10:4750–4755

    Article  Google Scholar 

  27. Su Y, Li S, Wu D, Zhang F, Liang H, Gao P, Cheng C, Feng X (2012) Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6:8349–8356

    Article  Google Scholar 

  28. Chang K, Chen WX (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composite with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by 973 Program (2013CB328803, 2013CB328804), the National Natural Science Foundation of China (61377030), and the Science and Technology Commission of Shanghai Municipal (12JC1404900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gufeng He.

Additional information

Xinkai Wu and Yanru Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhao, Y., Yang, C. et al. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J Mater Sci 50, 4250–4257 (2015). https://doi.org/10.1007/s10853-015-8977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8977-1

Keywords

Navigation