Skip to main content
Log in

Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work investigates the interactions between ferrite recrystallization and austenite formation in dual-phase steels by experiments performed at high heating rate (100 °C/s). It was shown that both ferrite recrystallization and austenite formation are strongly coupled and interdependent. The kinetics of ferrite recrystallization is strongly affected by the formation of austenite and can be even inhibited in some cases. The microstructure is more heterogeneous and anisotropic when both the austenite formation and the ferrite recrystallization overlap. It was highlighted that the degree of anisotropy depends on the volume fraction of austenite at a given temperature. Furthermore, an unusual behavior for austenite growth was highlighted. It is characterized by a much higher volume fraction than those obtained under OrthoEquilibrium and ParaEquilibrium. The results, especially those at 715 °C close to the eutectoid plateau, at which the driving force for austenite growth is classically low, suggest a diffusionless transformation for austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Llewellyn DT, Hillis DJ (1996) Dual phase steels. Ironmak Steelmak 23:471–478

    Google Scholar 

  2. Militzer M (2006) Microstructure evolution in dual-phase steels. Trans Indian Inst Met 59:711–724

    Google Scholar 

  3. Kuziak R, Kawalla R, Waengler S (2008) Advanced high strength steels for automotive industry: a review. Arch Civ Mech Eng 8:103–117

    Article  Google Scholar 

  4. Bouaziz O, Zurob H, Huang M (2013) Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res Int 84:937–947

    Google Scholar 

  5. Speich G, Demarest V, Miller R (1981) Formation of austenite during intercritical annealing of dual-phase steels. Met Trans A 12:1419

    Article  Google Scholar 

  6. Garcia CI, Deardo AJ (1981) Formation of austenite in 1.5 pct Mn steels. Met Trans A 12:521

    Article  Google Scholar 

  7. Tokizane M, Matsumura N, Tsuzaki K, Maki T, Tamura I (1982) Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels. Met Trans A 13:1379

    Article  Google Scholar 

  8. Yang D, Brown E, Matlock D, Krauss G (1985) The Formation of austenite at low intercritical annealing temperatures. Met Trans A 16:1523

    Article  Google Scholar 

  9. Huang J, Poole WJ, Militzer M (2004) Austenite formation during intercritical annealing. Metall Mater Trans A 35A:3363

    Article  Google Scholar 

  10. Leslie W, Plecity F, Michalak J (1961) Recrystallization of iron and iron-manganese alloys. Trans Metall Soc AIME 221:691–700

    Google Scholar 

  11. Petrov R, Kestens L, Houbaert Y (2001) Recrystallization of a cold rolled trip-assisted steel during reheating for intercritical annealling. ISIJ Int 41:883

    Article  Google Scholar 

  12. Maruyama N, Ogawa T, Takahashi M (2007) Recrystallization at intercritical annealing in low carbon steels. In: Kang SJL, Huh MY, Hwang NM, Homma H, Ushioda K, Ikuhara Y (eds) Recrystallization and Grain Growth III, Pts 1 and 2, 558-559 edn. Trans Tech Publications Ltd, Stafa-Zurich

    Google Scholar 

  13. Dillien S, Seefeld M, Allain S, Bouaziz O, Van Houtte P (2010) EBSD study of the substructure development with cold deformation of dual phase steel. Mater Sci Eng A 527:947–953

    Article  Google Scholar 

  14. Tian Y, Kraft R (1987) Mechanisms of pearlite spheroidization. Met Trans A 18:1403–1414

    Article  Google Scholar 

  15. Yang DZ, Brown EL, Matlock DK, Krauss G (1985) Ferrite recrystallization and austenite formation in cold rolled intercritically annealed steel. Metall Trans A 16A:1385–1392

    Article  Google Scholar 

  16. Ågren J, Abe H, Suzuki T, Sakuma Y (1986) The dissolution of cementite in a low-carbon steel during isothermal annealing at 700-Degrees-C. Met Trans A 17:617

    Article  Google Scholar 

  17. Goune M, Maugis P, Drillet J (2012) A criterion for the change from fast to slow regime of cementite dissolution in Fe–C–Mn steels. J Mater Sci Technol 28:728–736

    Article  Google Scholar 

  18. Atkinson C, Akbay T, Reed RC (1995) Theory for reaustenitisation from ferrite/cementite mixtures in Fe–C–X steels. Acta Metall Mater 43:2013–2031

    Article  Google Scholar 

  19. Caballero FG, Capdevila C, de Garcia Andrés C (2001) Modelling of kinetics of austenite formation in steels with different initial microstructures. ISIJ Int 41(10):1093–1102

    Article  Google Scholar 

  20. Toji Y, Yamashita T, Nakajima K, Okuda K, Matsuda H, Hasegawa K, Seto K (2011) Effect of Mn partitioning during intercritical annealing. ISIJ Int 51(5):818–825

    Article  Google Scholar 

  21. Mohanty RR, Girina OA, Fonstein NM (2011) Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region. Metall Mater Trans A 42A:3680–3690

    Article  Google Scholar 

  22. Azizi-Alizamini H, Militzer M, Poole WJ (2011) Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int 51:958–964

    Article  Google Scholar 

  23. Bleck W, Phiu-On K (2005) Microalloying of cold-formable multi phase steel grades. In: Rodriguez-Ibabe JM, Gutierrez I, Lopez B, Iza-Mendia I (eds) Microalloying for new steel processes and applications. Trans Tech Publications Ltd, Stafa-Zurich, pp 97–112

    Google Scholar 

  24. Hayami S, Furukawa T, Gondoh H, Takechi H (1979) Recent developments in formable hot and cold rolled HSLA including dual-phase sheet steels. In: Davenport AT (ed) Formable HSLA and dual-phase steels. TMS, New York, pp 167–180

    Google Scholar 

  25. Andrade-Carozzo V, Jacques PJ (2007) Interactions between recrystallization and phase transformations during annealing of cold rolled Nb-added TRIP-aided steels. Mater Sci Forum 539–543:4649–4654

    Article  Google Scholar 

  26. Ogawa T, Maruyama N, Sugiura N, Yoshinaga N (2010) Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels. ISIJ Int 50:469–475

    Article  Google Scholar 

  27. Peranio N, Li YJ, Roters F, Raabe D (2010) Microstructure and texture evolution in dualphase steels: competition between recovery, recrystallization, and phase transformation. Mater Sci Eng A 527:4161–4168

    Article  Google Scholar 

  28. Zheng C, Raabe D (2013) Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Mater 61:5504–5517

    Article  Google Scholar 

  29. Kulakov M, Poole WJ, Militzer M (2013) The effect of the initial microstructure on recrystallization and austenite formation in a DP600 steel. Metall Mater Trans A 44:3564–3576

    Article  Google Scholar 

  30. Chbihi A, Barbier D, Germain L, Hazotte A, Gouné M (2014) Interactions between ferrite recrystallization and austenite formation in high strength steels. J Mater Sci 49:3608–3621. doi:10.1007/s10853-014-8029-2

    Article  Google Scholar 

  31. Karmakar A, Ghosh M, Chakrabarti D (2013) Cold rolling and intercritical annealing of low carbon steel: effect of initial microstructure and heating rate. Mater Sci Eng A 564:389–399

    Article  Google Scholar 

  32. Dziaszyk S, Payton EJ, Friedel F, Marx V, Eggeler G (2010) On the characterization of recrystallized fraction using electron backscatter diffraction: a direct comparison to local hardness in an IF steel using nanoindentation. Mater Sci Eng A 527:7854–7864

    Article  Google Scholar 

  33. Thermocalc software, P16 version, Stockholm, Sweden

  34. Purdy G, Ågren J, Borgenstam A et al (2011) ALEMI: a Ten-Year history of discussions of alloying-element interactions with migrating interfaces. Metall Mater Trans A 42:3703–3718

    Article  Google Scholar 

  35. Han J, Lee Y-K (2014) Acta Mater 67:354

    Article  Google Scholar 

  36. Leslie WC, Plecity FJ, Michalak JT (1961) Recrystallization of iron and iron-manganese alloys. Trans Metall Soc AIME 221:691–700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Germain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbier, D., Germain, L., Hazotte, A. et al. Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels. J Mater Sci 50, 374–381 (2015). https://doi.org/10.1007/s10853-014-8596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8596-2

Keywords

Navigation