Skip to main content
Log in

Modeling of free eutectic growth and competitive solidification in undercooled near-eutectic alloys based on in situ measurements

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Free eutectic growth and its competition with single-phase growth in solidification of undercooled near-eutectic alloys are not yet fully understood. In this paper, the historical development of eutectic growth models was reviewed. The LZ model of free eutectic growth was evaluated using recent data of eutectic growth velocities in an undercooled Ni81.3Sn18.7 eutectic composition. An excellent agreement was achieved between the LZ model and the data. Crystal growth velocities in off-eutectic Ni83Sn17 and Ni80Sn20 compositions were measured using a high-speed camera technique. The present data of the off-eutectic compositions and the recent data of the eutectic composition were modeled using the LZ model and the LKT/BCT model of free dendritic growth. The modeling revealed that the competition between the free eutectic growth and the single-phase growth is controlled by the highest interface temperature criterion. A coupled zone of the α-Ni-Ni3Sn eutectic was calculated using this criterion. The coupled zone agrees well with studies of solidified structures of undercooled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barclay RS, Kerr HW, Niessen P (1971) Off-eutectic composite solidification and properties in Al−Ni and Al−Co alloys. J Mater Sci 6:1168–1173

    Article  Google Scholar 

  2. Jones BL, Weston GM, Southin RT (1971) Coupled and uncoupled growth in silver−copper alloys. J Cryst Growth 10:313–319

    Article  Google Scholar 

  3. Verhoeven JD, Gibson ED (1973) The dendrite-to-composite transition in off-eutectic Sn−Pb alloys. Metall Trans 4:2581–2590

    Article  Google Scholar 

  4. Burden MH, Hunt JD (1974) The extent of the eutectic range. J Cryst Growth 22:328–330

    Article  Google Scholar 

  5. Tassa M, Hunt JD (1976) The measurement of Al−Cu dendrite tip and eutectic interface temperatures and their use for predicting the extent of the eutectic range. J Cryst Growth 34:38–48

    Article  Google Scholar 

  6. Jones H, Kurz W (1980) Growth temperatures and the limits of coupled growth in unidirectional solidification of Fe−C eutectic alloys. Metall Trans A 11:1265–1273

    Article  Google Scholar 

  7. Mueller BA, Perepezko JH (1988) Microstructure development in undercooled Al−Al2Cu alloys. Mater Sci Eng 98:153–156

    Article  Google Scholar 

  8. Abbaschian R, Lipschutz MD (1997) Eutectic solidification processing via bulk melt undercooling. Mater Sci Eng A 226:13–21

    Article  Google Scholar 

  9. Han SH, Trivedi R (2000) Banded microstructure formation in off-eutectic alloys. Metall Mater Trans A 31:1819–1832

    Article  Google Scholar 

  10. Yao WJ, Wang N, Wei B (2002) Rapid solidification of highly undercooled Co-30 wt% Sn alloy. J Mater Sci Lett 21:357–360

    Article  Google Scholar 

  11. Han XJ, Wang N, Wei B (2002) Rapid eutectic growth under containerless condition. Appl Phys Lett 81:778–780

    Article  Google Scholar 

  12. Han XJ, Wei B (2002) Microstructural characteristics of Ni−Sb eutectic alloys under substantial undercooling and containerless solidification conditions. Metall Mater Trans A 33:1221–1228

    Article  Google Scholar 

  13. Yao WJ, Wang N, Wei B (2003) Containerless rapid solidification of highly undercooled Co−Si eutectic alloys. Mater Sci Eng A 344:10–19

    Article  Google Scholar 

  14. Yao WJ, Han XJ, Wei B (2003) Microstructural evolution during containerless rapid solidification of Ni–Mo eutectic alloys. J Alloys Compd 348:88–99

    Article  Google Scholar 

  15. Trivedi R, Jin F, Anderson IE (2003) Dynamical evolution of microstructure in finely atomized droplets of Al−Si alloys. Acta Mater 51:289–300

    Article  Google Scholar 

  16. Kurz W, Fisher DJ (1979) Dendrite growth in eutectic alloys: the coupled zone. Inter Met Rev 24:177–204

    Article  Google Scholar 

  17. Gill SC, Kurz W (1993) Rapidly solidified Al−Cu alloys—I. Experimental determination of the microstructure selection map. Acta Metal Mater 41:3563–3573

    Article  Google Scholar 

  18. Gill SC, Kurz W (1995) Rapidly solidified Al−Cu alloys—II. Calculation of the microstructure selection map. Acta Metall Mater 43:139–151

    Google Scholar 

  19. Gill SC, Zimmermann M, Kurz W (1992) Laser resolidification of the Al−Al2Cu eutectic: the coupled zone. Acta Metall Mater 40:2895–2906

    Article  Google Scholar 

  20. Hunziker O, Kurz W (1997) Solidification microstructure maps in NiAl alloys. Acta Mater 45:4981–4992

    Article  Google Scholar 

  21. Zimmermann M, Carrard M, Kurz W (1989) Rapid solidification of Al−Cu eutectic alloy by laser remelting. Acta Metall 37:3305–3313

    Article  Google Scholar 

  22. Tammann G, Botschwar AA (1926) Über die Kristallisationsgeschwindigkeit in binären und ternären Mischungen, aus denen die reinen Komponenten kristallisieren. Z Anorg Allg Chem 157:27–40

    Article  Google Scholar 

  23. Li M, Yoda S, Kuribayashi K (2005) Asymmetrical contribution of eutectic growth kinetics on the coupled growth behaviour in rapid eutectic solidification. Philos Mag 85:2581–2591

    Article  Google Scholar 

  24. Li M, Yoda S, Kuribayashi K (2006) Comments on the work by Wei and co-workers on free eutectic and dendritic solidification from undercooled metallic melts. Scrip Mater 54:1427–1432

    Article  Google Scholar 

  25. Li JF, Zhou YH (2005) Eutectic growth in bulk undercooled melts. Acta Mater 53:2351–2359

    Article  Google Scholar 

  26. Yang C, Gao J, Zhang YK, Kolbe M, Herlach DM (2011) New evidence for the dual origin of anomalous eutectic structures in undercooled Ni–Sn alloys: in situ observations and EBSD characterization. Acta Mater 59:3915–3926

    Article  Google Scholar 

  27. Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans Metall Soc AIME 236:1129–1142

    Google Scholar 

  28. Trivedi R, Magnin P, Kurz W (1987) Theory of eutectic growth under rapid solidification conditions. Acta Metall 35:971–980

    Article  Google Scholar 

  29. Kurz W, Trivedi R (1991) Eutectic growth under rapid solidification conditions. Metall Trans A 22:3051–3057

    Article  Google Scholar 

  30. Galenko PK, Herlach DM (2006) Diffusionless crystal growth in rapidly solidifying eutectic systems. Phys Rev Lett 96:150602

    Article  Google Scholar 

  31. Goetzinger R, Barth M, Herlach DM (1998) Growth of lamellar eutectic dendrites in undercooled melts. J Appl Phys 84:1643–1649

    Article  Google Scholar 

  32. Wei B, Yang GC, Zhou YH (1991) High undercooling and rapid solidification of Ni-32.5% Sn eutectic alloy. Acta Metall Mater 39:1249–1258

    Article  Google Scholar 

  33. Li JF, Jie WQ, Zhao S, Zhou YH (2007) Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni–Sn eutectic melt. Metall Mater Trans A 38:1806–1816

    Article  Google Scholar 

  34. Wei B, Herlach DM, Sommer F (1993) Rapid eutectic growth of undercooled metallic alloys. J Mater Sci Lett 12:1774–1777

    Article  Google Scholar 

  35. Wei B, Herlach DM (1993) Rapid solidification of bulk undercooled Ni-21.4 at % Si eutectic alloy. Proceedings IUMRS-ICAM-93 International Conference on Advanced Materials, Tokyo, P3-13-1-5

  36. Wei B, Herlach DM, Sommer F, Kurz W (1993) Rapid solidification of undercooled eutectic and monotectic alloys. Mater Sci Eng A 173:357–361

    Article  Google Scholar 

  37. Wei B, Herlach DM, Sommer F, Kurz W (1994) Rapid dendritic and eutectic solidification of undercooled Co-Mo alloys. Mater Sci Eng A 181–A182:1150–1155

    Article  Google Scholar 

  38. Leonhardt M, Löser W, Lindenkreuz HG (1999) Metastable phase formation in undercooled eutectic Ni78.6Si21.4 melts. Mater Sci Eng A 271:31–37

    Article  Google Scholar 

  39. Gao J, Zhang ZN, Zhang YK, Yang C (2012) Measurements of crystal growth dynamics in glass-fluxed melts. In: Herlach DM, Matson DM (eds) Solidification of containerless undercooled melts. Wiely, Weinheim, pp 281–303

    Chapter  Google Scholar 

  40. Sun DY, Asta M, Hoyt JJ (2004) Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys Rev B 69:024108-1–02410811

    Google Scholar 

  41. Herlach DM, Galenko PK (2007) Rapid solidification: in situ diagnostics and theoretical modeling. Mater Sci Eng A 449:34–41

    Article  Google Scholar 

  42. Yang C, Gao J (2014) Dendritic growth kinetics and disorder trapping of the intermetallic compound Ni3Sn under a static magnetic field. J Cryst Growth 394:24–27

    Article  Google Scholar 

  43. Nash P, Nash A (1985) The Ni–Sn (Nickel-Tin) system. Bull Alloy Ph Diagr 6:350–359

    Article  Google Scholar 

  44. Lipton J, Kurz W, Trivedi R (1987) Rapid dendrite growth in undercooled alloys. Acta Metall 35:957–964

    Article  Google Scholar 

  45. Trivedi R, Lipton J, Kurz W (1987) Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall 35:965–970

    Article  Google Scholar 

  46. Boettinger W, Coriell S, Trivedi R (1988) Application of dendritic growth theory to the interpretation of rapid solidification microstructures. In: Mehrabian R, Parrish PA (eds) Rapid solidification processing: principles and technologies IV. Claitor’s Publishing Division, Baton Rouge, pp 13–25

    Google Scholar 

  47. Mills KC, Monaghan BJ, Keene BJ (1996) Thermal conductivities of molten metals: Part 1 pure metals. Inter Mater Rev 41:209–242

    Article  Google Scholar 

  48. Edwards JB, Hucke EE, Martin JJ (1968) Diffusion in binary liquid-metal systems. Inter Mater Rev 13:1–28

    Article  Google Scholar 

  49. Guo X, Lin X, Wang Z, Cao Y, Peng D, Huang W (2013) Formation mechanism of anomalous eutectic and microstructure evolution in highly undercooled solidification of Ni-30 % Sn alloy. Acta Metall Sin 49:475–482

    Google Scholar 

  50. Wu Y, Piccone TJ, Shiohara Y, Flemings MC (1988) Dendritic growth of undercooled nickel-tin: Part III. Metall Trans A 19:1109–1119

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51071043) and by the Fundamental Research Funds for the Central Universities of Ministry of Education, China (N130509001). The authors thank Z. B. Xu, S. M. Zhang, B. X. Li and Y. J. Zhang for their assistance in the measurements of dendritic growth velocities. The authors also thank Dr. D. Holland-Moritz for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Gao, J. Modeling of free eutectic growth and competitive solidification in undercooled near-eutectic alloys based on in situ measurements. J Mater Sci 50, 268–278 (2015). https://doi.org/10.1007/s10853-014-8585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8585-5

Keywords

Navigation