Skip to main content

Advertisement

Log in

In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve biocompatibility and corrosion resistance during the initial implantation stage, zinc-substituted hydroxyapatite (ZnHAp) coating was fabricated on pure titanium by the electrolytic deposition method. The morphology, microstructure and chemical composition of the coating were investigated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy. The prepared ZnHAp crystals were calcium deficient and were carbonated owing to the incorporation of some Zn2+. This incorporation of Zn2+ into the HAp significantly reduced porosity and caused the coating to become noticeably denser. In addition, the Zn2+ ions were homogeneously distributed in the coating. The potentiodynamic polarisation test revealed that the ZnHAp-coated surface showed superior corrosion resistance over that of the HAp-coated surface and bare Ti. The in vitro bioactivity was evaluated in a simulated body fluid, which revealed that the ZnHAp coating can rapidly induce bone-like apatite formation of nuclear and growth features. In addition, the cell response tests showed that the MC3T3-E1 cells on the ZnHAp coating clearly enhanced the in vitro cytocompatibility of Ti compared with the same cells on HAp coating. ZnHAp coating was thus beneficial for improving biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang RY, Cai S, Xu GH et al (2014) Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance. Appl Surf Sci. doi:10.1016/j.apsusc.2014.06.104

  2. Yan YJ, Ding QQ, Huang Y et al (2014) Magnesium substituted hydroxyapatite coating on titanium with nanotublar TiO2 intermediate layer via electrochemical deposition. Appl Surf Sci 305:77–85

    Article  Google Scholar 

  3. Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater 10:557–579

    Article  Google Scholar 

  4. da Prado Silva MH, Moura FN, da Navarro Rocha D et al (2014) Zinc-modified hydroxyapatite coatings obtained from parascholzite alkali conversion. Surf Coat Technol 249:109–117

    Article  Google Scholar 

  5. Bir F, Khireddine H, Touati A et al (2012) Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Appl Surf Sci 258:7021–7030

    Article  Google Scholar 

  6. Gopi D, Ramya S, Rajeswari D et al (2014) Strontium, cerium co-substituted hydroxyapatite nanoparticles: synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloid Surf A 451:172–180

    Article  Google Scholar 

  7. Sharifnabi A, Fathi MH, Yekta BE et al (2014) The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainlesssteel human body implant. Appl Surf Sci 288:331–340

    Article  Google Scholar 

  8. Gopi D, Karthika A, Nithiya S et al (2014) In vitro biological performance of minerals substituted hydroxyapatite coating by pulsed electrodeposition method. Mater Chem Phys 144:75–85

    Article  Google Scholar 

  9. Sutha S, Karunakaran G, Rajendran V (2013) Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316L stainless steel implant for biomedical application. Ceram Int 39:5205–5212

    Article  Google Scholar 

  10. Chen HY, Zhang EL, Yang K (2014) Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application. Mater Sci Eng C 34:201–206

    Article  Google Scholar 

  11. Sankavaram K, Freake HC (2012) The effects of transformation and ZnT-1 silencing on zinc homeostasis in cultured cells. J Nutr Biochem 23:629–634

    Article  Google Scholar 

  12. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Google Scholar 

  13. Venkatasubbu GD, Ramasamy S, Ramakrishnan V et al (2011) Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. Biotech 1:173–186

    Google Scholar 

  14. Venkatasubbu GD, Ramasamy S, Avadhani GSV et al (2012) Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J Nanopart Res 14:819

    Article  Google Scholar 

  15. Hashizume M, Yamaguchi M (1993) Stimulatory effect of beta-alanyl-l-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem 122:59–64

    Article  Google Scholar 

  16. Prasad AS, Beck FW, Endre L et al (1996) Zinc deficiency affects cell cycle and deoxythymidine kinase gene expression in HUT-78 cells. J Lab Clin Med 128:51–60

    Article  Google Scholar 

  17. Sun GF, Ma J, Zhang SM (2014) Electrophoretic deposition of zinc-substituted hydroxyapatite coatings. Mater Sci Eng C 39:67–72

    Article  Google Scholar 

  18. Erakovic S, Veljovic D, Diouf PN et al (2012) The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat 75:275–283

    Article  Google Scholar 

  19. Song YW, Shan DY, Han EH (2013) A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg–3Zn alloy. Mater Sci Eng C 33:78–84

    Article  Google Scholar 

  20. Huang Y, Yan YJ, Pang XF (2013) Electrolytic deposition of fluorine-doped hydroxyapatite/ZrO2 films on titanium for biomedical applications. Ceram Int 39:245–253

    Article  Google Scholar 

  21. Huang Y, Han SG, Pang XF et al (2013) Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci 271:299–302

    Article  Google Scholar 

  22. Djosic MS, Panic V, Stojanovica J et al (2012) The effect of applied current density on the surface morphology of deposited calcium phosphate coatings on titanium. Colloid Surf A 400:36–43

    Article  Google Scholar 

  23. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR (2013) Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy. Surf Coat Technol 222:79–89

    Article  Google Scholar 

  24. Wang HX, Zhu SJ, Wang LG et al (2014) Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant. Appl Surf Sci 307:92–100

    Article  Google Scholar 

  25. Huang Y, Ding QQ, Han SG et al (2013) Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J Mater Sci Mater Med 24:1853–1864

    Article  Google Scholar 

  26. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  27. Rojaee R, Fathi M, Raeissi K (2013) Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl Surf Sci 285:664–673

    Article  Google Scholar 

  28. Kokubo T (2005) Design of bioactive bone substitutes based on biomineralization process. Mater Sci Eng C 25:97–104

    Article  Google Scholar 

  29. Blackwood DJ, Seah KHW, Han EH (2009) Electrochemical cathodic deposition of hydroxyapatite: improvements in adhesion and crystallinity. Mater Sci Eng C 29:1233–1238

    Article  Google Scholar 

  30. Nishiguchi S, Fujibayashi S, Kim HM et al (2003) Biology of alkali-and heat-treated titanium implants. J Biomed Mater Res A 67:26–35

    Article  Google Scholar 

  31. Lakstein D, Kopelovitch W, Barkay Z et al (2009) Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti–6Al–4V implants in rabbits. Acta Biomater 5:2258–2269

    Article  Google Scholar 

  32. Zhao QM, Guo X, Dang XQ et al (2013) Preparation and properties of composite MAO/ECD coatings on magnesium alloy. Colloid Surf B 102:321–326

    Article  Google Scholar 

  33. Suganthi RV, Elayaraja K, Joshy MIA et al (2011) Fibrous growth of strontium substituted hydroxyapatite and its drug release. Mater Sci Eng C 31:593–599

    Article  Google Scholar 

  34. Batra U, Kapoor S, Sharma S (2012) Influence of magnesium ion substitution on structural and thermal behavior of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806

    Article  Google Scholar 

  35. Hu W, Ma J, Wang JG et al (2012) Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles. Mater Sci Eng C 32:2404–2410

    Article  Google Scholar 

  36. Uysal I, Severcan F, Evis Z (2013) Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceram Int 39:7727–7733

    Article  Google Scholar 

  37. Nathanael AJ, Mangalaraj D, Chen PC et al (2011) Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. J Nanopart Res 13:1841–1853

    Article  Google Scholar 

  38. Zima A, Paszkiewicz Z, Siek D et al (2012) Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceram Int 38:4935–4942

    Article  Google Scholar 

  39. Morales-Nietoa V, Navarro CH, Moreno KJ et al (2013) Poly(methyl methacrylate)/carbonated hydroxyapatite composite applied as coating on ultra high molecular weight polyethylene. Prog Org Coat 76:204–208

    Article  Google Scholar 

  40. Iqbal N, Kadir MRA, Mahmood NH et al (2014) Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513

    Article  Google Scholar 

  41. Narayanan R, Seshadri SK, Kwon TY et al (2008) Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B 85:279–299

    Article  Google Scholar 

  42. Xie JH, Luan BL, Wang JF et al (2008) Novel hydroxyapatite coating on new porous titanium and titanium-HDPE composite for hip implant. Surf Coat Technol 202:2960–2968

    Article  Google Scholar 

  43. Jiang HC, Rong LJ (2006) Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method. Surf Coat Technol 201:1017–1021

    Article  Google Scholar 

  44. Gopi D, Ramya S, Rajeswari D et al (2013) Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel. Colloid Surf B 107:130–136

    Article  Google Scholar 

  45. Pang X, Zhitomirsky I (2005) Electrodeposition of composite hydroxyapatite–chitosan films. Mater Chem Phys 94:245–251

    Article  Google Scholar 

  46. Yugeswaran S, Yoganand CP, Kobayashi A et al (2012) Mechanical properties, electrochemical corrosion and in vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying. J Mech Behav Biomed 9:22–33

    Article  Google Scholar 

  47. Ashok M, Sundaram NM, Kalkura SN (2003) Crystallization of hydroxyapatite at physiological temperature. Mater Lett 57:2066–2070

    Article  Google Scholar 

  48. Trommera RM, Santosb LA, Bergmann CP (2009) Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater Sci Eng C 29:1770–1775

    Article  Google Scholar 

  49. Müller L, Müller FA (2006) Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater 2:181–189

    Article  Google Scholar 

  50. Stoch A, Jastrzebski W, Brozek A et al (2000) FTIR absorption–reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct 555:375–382

    Article  Google Scholar 

  51. Kuriakose TA, Kalkura SN, Palanichamy M et al (2004) Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J Cryst Growth 263:517–523

    Article  Google Scholar 

  52. Alcantara EH, Shin MY, Feldmann J et al (2013) Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis 228:46–52

    Article  Google Scholar 

  53. Horiuchi S, Hiasa M, Yasue A et al (2014) Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement. J Mech Behav Biomed Mater 29:151–160

    Article  Google Scholar 

  54. Hondal Y, Anada T, Morimoto S et al (2013) Labile Zn ions on octacalcium phosphate-derived Zn-containing hydroxyapatite surfaces. Appl Surf Sci 273:343–348

    Article  Google Scholar 

  55. Ito A, Ojima K, Naito H et al (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183

    Article  Google Scholar 

  56. Wang X, Ito A, Sogo Y et al (2010) zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6:962–968

    Article  Google Scholar 

  57. Hayakawa T, Yoshinari M, Kiba H et al (2002) Trabecular bone response to surface roughened and calcium phosphate (Ca–P) coated titanium implants. Biomaterials 23:1025–1031

    Article  Google Scholar 

  58. Kunzler TP, Drobek T, Schuler M et al (2007) Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 28:2175–2182

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (“973” Program, No. 2011CB503700), and the outstanding doctoral academic projects of University of Electronic Science and Technology of China (No. YBXSZC20131042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Huang or Xiaofeng Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Zhang, X., Huang, Y. et al. In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci 50, 189–202 (2015). https://doi.org/10.1007/s10853-014-8578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8578-4

Keywords

Navigation