Skip to main content
Log in

Novel antibacterial electrospun mats based on poly(d,l-lactide) nanofibers and zinc oxide nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This investigation addresses the morphological, mechanical, and antibacterial evaluation of nanocomposite mats based on poly(d,l-lactide) nanofibers with different zinc oxide nanoparticles (nano-ZnO) concentration, that were elaborated by two techniques, i.e., electrospinning of polymer/ZnO solutions and the combination of electrospinning of polymer solutions with electrospraying of nano-ZnO dispersions. The analysis of the precursory solutions was carried out in order to understand the achieved morphology of nanofibers. The obtained poly(d,l-lactide)/ZnO fibrous mats showed a uniform morphology with an average porosity ca. 55 % and average pore size around 45 μm. The presence of ZnO nanoparticles increased the toughness of the mats, and an optimal nano-ZnO concentration (i.e., 3 wt%) was observed at which the tensile strength and Young’s modulus could be improved. Concerning to the antibacterial properties, a relatively low concentration of nanoparticles provoked a growth inhibition of the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus bacteria. The mats have potential features for use as antimicrobial wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621. doi:10.1016/j.polymer.2008.09.014

    Article  Google Scholar 

  2. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. doi:10.1016/j.biotechadv.2010.01.004

    Article  Google Scholar 

  3. Zahedi P, Rezaeian I, Ranaei-Siadat S-O, Jafari S-H, Supaphol P (2009) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95. doi:10.1002/pat.1625

    Google Scholar 

  4. Jaworek A, Krupa A, Lackowski M, Sobczyk AT, Czech T, Ramakrishna S, Sundarrajan S, Pliszka D (2009) Electrospinning and electrospraying techniques for nanocomposite non-woven fabric production. Fibres & Textiles in Eastern Europe 17(4):77–81

    Google Scholar 

  5. Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53(5):257–274. doi:10.1179/174328008x353547

    Article  Google Scholar 

  6. Espitia PJP, NdFF Soares, JSdR Coimbra, Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc Oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5(5):1447–1464. doi:10.1007/s11947-012-0797-6

    Article  Google Scholar 

  7. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Controlled Release 156(2):128–145. doi:10.1016/j.jconrel.2011.07.002

    Article  Google Scholar 

  8. Hajipour MJ, Fromm KM, Ashkarran AA, DJd Aberasturi, IRd Larramendi, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  Google Scholar 

  9. Wang ZL (2004) Zinc Oxide Nanostructures: growth, properties and applications. J Phys: Condens Matter 16:829–858. doi:10.1088/0953-8984/16/25/R01

    Google Scholar 

  10. Yu W, Lan C-H, Wang S-J, Fang P-F, Sun Y-M (2010) Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber. Polymer 51:2403–2409. doi:10.1016/j.polymer.2010.03.024

    Article  Google Scholar 

  11. Ashrafi F, Babanejad SA (2012) Investigation on synthesis of zinc oxide-polyethylene composite nanofibers by electrospinning method. Res J Appl Sci, Eng Technol 4(18):3386–3390

    Google Scholar 

  12. Kayaci F, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T (2012) Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS Appl Mater Interfaces 4(11):6185–6194. doi:10.1021/am3017976

    Article  Google Scholar 

  13. Vitchuli N, Shi Q, Nowak J, Kay K, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications. Sci Technol Adv Mater 12(5):055004. doi:10.1088/1468-6996/12/5/055004

    Article  Google Scholar 

  14. Shalumon KT, Anulekha KH, Nair SV, Chennazhi KP, Jayakumar R (2011) Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254. doi:10.1016/j.ijbiomac.2011.04.005

    Article  Google Scholar 

  15. Son B, Yeom B-Y, Song SH, Lee C-S, Hwang TS (2009) Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. J Appl Polym Sci 111(6):2892–2899. doi:10.1002/app.29233

    Article  Google Scholar 

  16. Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan TS (2012) Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr Polym 87(2):1065–1072. doi:10.1016/j.carbpol.2011.08.030

    Article  Google Scholar 

  17. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(3):1–17. doi:10.1007/s10965-013-0347-6

    Article  Google Scholar 

  18. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances 4(47):24777. doi:10.1039/c4ra02450h

    Article  Google Scholar 

  19. Garlotta D (2001) A Literature Review of Poly(Lactic Acid). J Polym Environ 9(2):63–84

    Article  Google Scholar 

  20. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482. doi:10.1016/j.progpolymsci.2007.01.005

    Article  Google Scholar 

  21. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv 30(1):321–328. doi:10.1016/j.biotechadv.2011.06.019

    Article  Google Scholar 

  22. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356. doi:10.1016/j.progpolymsci.2009.12.003

    Article  Google Scholar 

  23. Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579

    Article  Google Scholar 

  24. Buzarovska A, Grozdanov A (2012) Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: thermal properties and degradation. J Appl Polym Sci 123(4):2187–2193. doi:10.1002/app.34729

    Article  Google Scholar 

  25. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94(10):1646–1655. doi:10.1016/j.polymdegradstab.2009.07.001

    Article  Google Scholar 

  26. Song M, Pan C, Li J, Wang X, Gu Z (2006) Electrochemical Study on Synergistic Effect of the Blending of Nano TiO2 and PLA Polymer on the Interaction of Antitumor Drug with DNA. Electroanalysis 18(19–20):1995–2000. doi:10.1002/elan.200603613

    Article  Google Scholar 

  27. Yang T, Wu D, Lu L, Zhou W, Zhang M (2011) Electrospinning of polylactide and its composites with carbon nanotubes. Polym Compos 32(8):1280–1288. doi:10.1002/pc.21149

    Article  Google Scholar 

  28. Ji X, Wang D, Guo L, Jin L, Yang W, Wang T, He N Effect of ZnO on the mechanical properties of poly(L-lactide)/zinc oxide blends prepared by electrospinning. In: 243rd ACS National Meeting & Exposition, San Diego, CA, USA, 2012. American Chemical Society

  29. Ramier J, Bouderlique T, Stoilova O, Manolova N, Rashkov I, Langlois V, Renard E, Albanese P, Grande D (2014) Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering: C 38 (0):161-169. doi:http://dx.doi.org/10.1016/j.msec.2014.01.046

  30. Barreto G, Morales G, López-Quintanilla ML (2013) Microwave assisted synthesis of zno nanoparticles: effect of precursor reagents, temperature, irradiation time and additives on nano-zno morphology development. J Mater 478681:1–11. doi:10.1155/2013/478681

    Article  Google Scholar 

  31. Zhou S, Zheng X, Yu X, Wang J, Weng J, Li X, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(d, l-lactide)/hydroxyapatite nanocomposites. Chem Mater 19(2):247–253

    Article  Google Scholar 

  32. Ortíz-Rodríguez E (2013) Polymer Rheology. In: Saldivar-Guerra E, Vivaldo-Lima E (eds) Handbook of polymer synthesis, characterization, and processing. Wiley, Hoboken

    Google Scholar 

  33. Tiwari SK, Venkatraman SS (2012) Importance of viscosity parameters in electrospinning: of monolithic and core–shell fibers. Mater Sci Eng, C 32(5):1037–1042. doi:10.1016/j.msec.2012.02.019

    Article  Google Scholar 

  34. Ck Sen (2009) Wound healing essentials: let there be oxygen. Wound Repair Regen 17(1):1–18

    Article  Google Scholar 

  35. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961. doi:10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  36. Jeong JS, Moon JS, Jeon SY, Park JH, Alegaonkar PS, Yoo JB (2007) Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Sol Films 515(12):5136–5141. doi:10.1016/j.tsf.2006.10.058

    Article  Google Scholar 

  37. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on escherichia coli bacteria in ultrafine zno nanoparticles colloidal medium. Nano Lett 6(4):866–870

    Article  Google Scholar 

  38. Amna T, Hassan MS, Barakat NA, Pandeya DR, Hong ST, Khil MS, Kim HY (2012) Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol 93(2):743–751. doi:10.1007/s00253-011-3459-0

    Article  Google Scholar 

  39. Ts P, Lakshmanan VK, Raj M, Biswas R, Hiroshi T, Nair SV, Jayakumar R (2013) Evaluation of wound healing potential of beta-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30(2):523–537. doi:10.1007/s11095-012-0898-y

    Article  Google Scholar 

  40. Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114(6):3652–3658. doi:10.1002/app.30778

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CONACyT (México) for providing H. Rodríguez-Tobías with a Ph.D. Grant as well as a financial support for the research stay in the ICMPE (Thiais, France). The authors also thank Jesús Cepeda, Myriam Lozano, María Luisa López (CIQA, México), and Marie-France Trichet (ICMPE, France) for their technical assistance in issues related to electron microscopy characterization, as well as Enrique Jiménez and Arely Velazquez (CIQA, México) for the facilities concerning viscosity measurements, and finally Jesús Quiróz and Gabriela Padrón (CIQA, México) for their technical support in the evaluation of the mechanical and antibacterial properties, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Morales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Tobías, H., Morales, G., Ledezma, A. et al. Novel antibacterial electrospun mats based on poly(d,l-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci 49, 8373–8385 (2014). https://doi.org/10.1007/s10853-014-8547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8547-y

Keywords

Navigation