Skip to main content
Log in

Investigation of the internal structure of hemp fibres using optical coherence tomography and Focused Ion Beam transverse cutting

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of plant fibres in composite applications requires an efficient characterisation of their mechanical properties and thus an accurate description of their internal structure. The review of literature points out that there is still a lack of data on the organisation and structure of bast fibres. In this study, we propose to investigate the internal structure of hemp fibres using two experimental techniques: Focused Ion Beam (FIB) microscopy and optical coherence tomography (OCT). Results indicate that OCT, a non-destructive and non-invasive technique, is a powerful technique to quickly and easily describe the internal structure of fibres and also to discriminate single fibres from bundle of fibres. In this paper, we also show that among technical hemp fibres and for a same range of external diameters (of about 20–30 μm), two types of internal structures can be observed: (i) elementary fibres with a thick wall and a small lumen and (ii) bundle of small fibres with an external diameter of a few microns. According to data of literature, these two structures were identified as being respectively primary fibres and bundle of secondary fibres. This result is of great importance for the mechanical characterization of the bast hemp fibres. Indeed, this means that during the test campaigns, the batch of isolated fibres is undoubtedly composed of both single primary fibres and bundle of secondary fibres. It certainly participates to the high scattering in results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faruk O, Bledzki A, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  2. Placet V, Trivaudey F, Cisse O, Guicheret-Retel V, Boubakar L (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part A 43(2):275–287

    Article  Google Scholar 

  3. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1—fibres as reinforcements. Compos Part A 41:1329–1335

    Article  Google Scholar 

  4. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 2—composites. Compos Part A 41:1336–1344

    Article  Google Scholar 

  5. Crônier D, Monties B, Chabbert B (2005) Structure and chemical composition of bast fibers isolated from developing hemp stem. J Agric Food Chem 53:8279–8289

    Article  Google Scholar 

  6. Hernandez A, Westerhuis W, van Dam JEG (2007) Microscopic study on hemp bast fibre formation. J Nat Fibers 3(4):1–12

    Article  Google Scholar 

  7. Mediavilla V, Leupin M, Keller A (2001) Influence of the growth stage of industrial hemp on the field formation in relation to certain fibre quality traits. Ind Crop Prod 13:49–56

    Article  Google Scholar 

  8. Blake AW, Marcus SE, Copeland JE, Blackburn RS, Knox JP (2008) In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L. Planta 228:1–13

    Article  Google Scholar 

  9. Sankari HS (2000) Comparison of bast fibre yield and mechanical fibre properties of hemp (Cannabis sativa L.) cultivars. Ind Crop Prod 11:73–84

    Article  Google Scholar 

  10. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos Part A 38:461–468

    Article  Google Scholar 

  11. Aslan M, Chinga-Carrasco G, Sorensen BF, Madsen B (2011) Strength variability of single flax fibres. J Mater Sci 46:6344–6354

    Article  Google Scholar 

  12. Virk AS, Hall W, Summerscales J (2010) Failure strain as the key design criterion for fracture of natural fibre composites. Comp Sci Technol 70:995–999

    Article  Google Scholar 

  13. Burgert I, Gierlinger N, Zimmermann T (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: structural and chemical characterization. Holzforschung 59:240–246

    Google Scholar 

  14. Burgert I, Frühmann K, Keckes J, Fratzl P, StanzlTschegg S (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 2: twisting phenomena. Holzforschung 59:247–251

    Google Scholar 

  15. Burgert I, Eder M, Frühmann K, Keckes J, Fratzl P, StanzlTschegg S (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 3: mechanical characterisation. Holzforschung 59:354–357

    Google Scholar 

  16. Bourmaud A, Morvan C, Baley C (2010) Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Ind Crop Prod 32:662–667

    Article  Google Scholar 

  17. Placet V, Cisse O, Boubakar L (2012) Influence of environmental relative humidity on the tensile and rotational behavior of hemp fibres. J Mater Sci 47(7):3435–3446. doi:10.1007/s10853-011-6191-3

    Article  Google Scholar 

  18. Abbey B, Eve S, Thuault A, Charlet K, Korunsky A (2010) Synchrotron X-ray tomographic investigation of internal structure of individual flax fibres. IFMBE Proc 31:1151–1154

    Article  Google Scholar 

  19. Domenges B, Charlet K (2010) Direct insights on flax fiber structure by focused ion beam microscopy. Microsc Microanal 16(2):175–182

    Article  Google Scholar 

  20. Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohyd Polym 82:54–61

    Article  Google Scholar 

  21. Clair B, Gril J, Baba K, Thibaut B, Sugiyama J (2005) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26(2):189–195

    Article  Google Scholar 

  22. Koivu V, Turpeinen T, Myllys M, Timonen J, Kataja M (2009) Three dimensional single fibre imaging in micro- and nano-scales. In: Proceedings of the workshop on single fiber testing and modeling. The paper mechanics cluster and COST action FF0802

  23. Malek M, Khelfa H, Poilane C, Mounier D, Picart P, Investigation of dynamic properties of linen fiber with digital holographic tomography. In: Forum on volume reconstruction techniques for 3D fluids & solid mechanics, Poitiers, France, 29 Nov–1 Dec, 2011

  24. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1–2):9–25

    Article  Google Scholar 

  25. Morgner U, Drexler W, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24:1221–1223

    Article  Google Scholar 

  26. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  Google Scholar 

  27. Hettinger JW, de la Pena Mattozzi M, Myers WR, Williams ME, Reeves A, Parsons RL, Haskell D, Petersen C, Wang R, Medford JI (2000) Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells. Plant Physiol 123(1):3–15

    Article  Google Scholar 

  28. Reeves A, Parsons RL, Hettinger JW, Medford JI (2002) In vivo three-dimensional imaging of plants with optical coherence microscopy. J Microsc 208(3):177–189

    Article  Google Scholar 

  29. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117:43–48

    Article  Google Scholar 

  30. Leitgeb R, Hitzenberger CK, Fercher AF (2003) Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  Google Scholar 

  31. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66:239–303

    Article  Google Scholar 

  32. Drexler W, Fujimoto JG (2008) Optical coherence tomography: technology and applications. Springer Verlag, Berlin

    Book  Google Scholar 

  33. Zeylikovich I, Alfano RR (1996) Ultrafast dark-field interferometric microscopic reflectometry. Opt Lett 21:1682–1684

    Article  Google Scholar 

  34. Verrier I, Brun G, Goure JP (1997) SISAM interferometer for distance measurements. Appl Opt 36:6225–6230

    Article  Google Scholar 

  35. Connes P (1957) Un nouveau type de spectromètre : l’interferomètre réseaux. J Mod Opt 4:136–144

    Google Scholar 

  36. Froehly L, Ouadour M, Furfaro L, Sandoz P, Gharbi T, Leproux P, Huss G, Couderc V (2008) Spectroscopic OCT by grating-based temporal correlation coupled to optical spectral analysis Int. J. Biomed. Imaging 2008:752340

    Google Scholar 

  37. Froehly L, Furfaro L, Sandoz P, Jeanningros P (2009) Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems. Opt Commun 282:1488–1495

    Article  Google Scholar 

  38. Froehly L, Iyer S, Vanholsbeeck F (2011) Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based scan-free’ time domain optical coherence tomography system. Opt Commun 284(16–17):4099–4106

    Article  Google Scholar 

  39. Froehly L, Meteau J (2012) Supercontinuum sources in optical coherence tomography: a state of the art and the application to scan-free time domain correlation techniques and depth dependant dispersion compensation. Opt Fiber Technol 18(5):411–419

    Article  Google Scholar 

  40. Froehly L, Leitgeb R (2010) Scan-free optical correlation techniques: history and applications to optical coherence tomography. J Opt 12(8):084001

    Article  Google Scholar 

  41. Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32(5):389–399

    Article  Google Scholar 

  42. Grajciar B, Lehareinger Y, Fercher A, Leitgeb R (2010) High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s. Opt Express 18:21841–21850

    Article  Google Scholar 

  43. Lewin M, Pearce EM (1998) Handbook of fiber chemistry, 2nd edn, Revised and Expanded. CRC Press, International Fiber Science and Technology series/15, New York

Download references

Acknowledgements

This work was partly supported by the French RENATECH network and its FEMTO-ST technological facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Placet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 74803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placet, V., Méteau, J., Froehly, L. et al. Investigation of the internal structure of hemp fibres using optical coherence tomography and Focused Ion Beam transverse cutting. J Mater Sci 49, 8317–8327 (2014). https://doi.org/10.1007/s10853-014-8540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8540-5

Keywords

Navigation