Skip to main content
Log in

Photoluminescence properties and energy transfer in γ-irradiated Dy3+, Eu3+-codoped fluoroaluminoborate glasses

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The photoluminescence (PL) properties of singly doped (Dy3+) and codoped (Dy3+, Eu3+) fluoroaluminoborate glasses, with an emphasis on the white light generation, are studied. The γ-irradiation led to the formation of defects in Dy3+-doped glasses and photoreduction of Eu3+ to Eu2+ in codoped (Dy3+, Eu3+) glasses. The electron paramagnetic resonance spectra confirm the presence of divalent europium ions and defects in Dy3+, Dy3+–Eu3+-doped glasses. The FTIR spectra mainly establish the compaction of glass network due to γ-irradiation. From the PL spectra, the intensity ratio of Dy3+ emission bands yellow to blue (4F9/26H13/2/4F9/26H15/2) defines the site symmetry, covalency, and feasibility of extracting white light. The existence of an energy transfer (ET) from Dy3+ to Eu3+ ions are established due to the decrease in intensity of Dy3+ peaks with an increase of Eu2O3 content. Moreover, the non-exponential nature of decay curves was well fitted with the generalization of Yokota–Tanimoto model for electric dipole-quadrupole (S = 8) interaction that is responsible for ET process from sensitizer (Dy3+) to activator (Eu3+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaur P, Kaur S, Singh GP, Singh DP (2014) Cerium and samarium codoped lithium aluminoborate glasses for white light emitting devices. J Alloys Compd 588:394–398

    Article  Google Scholar 

  2. Liu S, Zhao G, Ying H, Wang J, Han G (2008) Eu/Dy ions co-doped white light luminescence zinc–aluminoborosilicate glasses for white LED. Opt Mater 31:47–50

    Article  Google Scholar 

  3. Amarnath Reddy A, Chandra Sekhar M, Pradeesh K, Surendra Babu S, Vijaya Prakash G (2011) Optical properties of Dy3+–doped sodium–aluminum–phosphate glasses. J Mater Sci 46:2018–2023

    Article  Google Scholar 

  4. Kesavulu CR, Jayasankar CK (2011) White light emission in Dy3+–doped lead fluorophosphate glasses. Mater Chem Phys 130:1078–1085

    Article  Google Scholar 

  5. Dwivedi Y, Thakur SN, Rai SB (2007) Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix. Appl Phys B 89:45–51

    Article  Google Scholar 

  6. Shan Z, Chen D, Yu Y, Huang P, Lin H, Wang Y (2010) Luminescence in rare earth-doped transparent glass ceramics containing GdF3 nanocrystals for lighting applications. J Mater Sci 45:2775–2779

    Article  Google Scholar 

  7. Tang L, Xia HP, Wang PY, Peng JT, Zhang YP, Jiang HC (2013) Preparation and luminescence characteristics of LiYF4:Tm3+/Dy3+ single crystals for white-light LEDs. J Mater Sci 48(21):7518–7522. doi:10.1007/s10853-013-7566-4

    Article  Google Scholar 

  8. Wu L, Zhang Y, Gui M, Lu P, Zhao L, Tian S, Kong Y, Xu J (2012) Luminescence and energy transfer of a color tunable phosphor: Dy3+–Tm3+–and Eu3+–coactivated KSr4(BO3)3 for warm white UV LEDs. J Mater Chem 22:6463–6470

    Article  Google Scholar 

  9. Zhu G, Ci Z, Xin S, Wen Y, Wang Y (2013) Warm white light generation from Dy3+ doped NaSr2Nb5O15 for white LEDs. Mater Lett 91:304–306

    Article  Google Scholar 

  10. Mohan Babu A, Jamalaiah BC, Suresh Kumar J, Sasikala T, Rama Moorthy L (2011) Spectroscopic and photoluminescence properties of Dy3+ doped lead tungsten tellurite glasses for laser materials. J Alloys Compd 509:457–462

    Article  Google Scholar 

  11. Jayasimhadri M, Rama Moorthy L, Kojima K, Yamamoto K, Wada N, Wada N (2006) Optical properties of Dy3+ ions in alkali tellurofluorophosphate glasses for laser materials. J Phys D Appl Phys 39:635–641

    Article  Google Scholar 

  12. Dorosz D, Zmojda J, Kochanowicz M (2014) Broad band near-IR emission in glass codoped with rare earth ions. SPIE Newsroom. doi:10.1117/2.1201404.005415

    Google Scholar 

  13. Venkateswara Rao G, Yadagiri Reddy P, Veeraiah N (2002) Thermoluminescence studies on Li2O–CaF2–B2O3 glasses doped with manganese ions. Mater Lett 57:403–408

    Article  Google Scholar 

  14. Palik (eds) (1997) Handbook of Optical Constants. Academic Press, Orlando vol 3, ISBN 0-12-544423-0

  15. Hari Babu B, Ravi Kanth Kumar VV (2012) Fluorescence properties and electron paramagnetic resonance studies of γ-irradiated Sm3+–doped oxyfluoroborate glasses. J Appl Phys 112:093516

    Article  Google Scholar 

  16. El-Batal HA, Azooz MA, Ezz-El-Din FM, El-Alaily NA (2001) Interaction of gamma rays with calcium aluminoborate glasses containing holmium or erbium. J Am Ceram Soc 84:2065–2072

    Article  Google Scholar 

  17. Liu Y, Zhu B, Wang L, Qiu J, Dai Y, Ma H (2008) Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses. Appl Phys Lett 92:121113

    Article  Google Scholar 

  18. Martin LL, Gonzalez PH, Martin IR, Puerto D, Solis J, Caceres JM, Capuj NE (2010) Local devitrification of Dy3+ doped Ba2TiSi2O8glass by laser irradiation. Opt Mater 33:186–190

    Article  Google Scholar 

  19. Hari Babu B, Ravi Kanth Kumar VV (2013) Photoluminescence properties of Tb–Eu–Mn–codoped fluoroborate glasses under γ-irradiation. J Appl Phys 114:123512

    Article  Google Scholar 

  20. Hari Babu B, Ravi Kanth Kumar VV (2014) Photoluminescence and color tunability of-irradiated Tb3+–Sm3+–codoped oxyfluoride aluminoborate glasses. J Mater Sci 49:415–423

    Article  Google Scholar 

  21. Singh D, Singh K, Bajwa BS, Mudahar GS, Singh DP, Manupriya MA, Dangwal VK (2008) Optical and structural properties of Li2O–Al2O3–B2O3 glasses before and after γ-irradiation effects. J Appl Phys 104:103515

    Article  Google Scholar 

  22. Kaur P, Singh GP, Kaur S, Singh DP (2012) Modifier role of cerium in lithium aluminium borate glasses. J Mol Struct 1020:83–87

    Article  Google Scholar 

  23. Jiao Q, Yu X, Xu X, Zhou D, Qiu J (2013) Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere. J Solid State Chem 202:65–69

    Article  Google Scholar 

  24. Sharma G, Singh K, Manupriya MS, Singh H, Bindra S (2006) Effects of gamma irradiation on optical and structural properties of PbO–Bi2O3–B2O3 glasses. Radiat Phys Chem 75:959–966

    Article  Google Scholar 

  25. Lavin V, Babu P, Jayasankar CK, Martin IR, Rodriguez VD (2001) On the local structure of Eu3+ ions in oxyfluoride glasses. Comparison with fluoride and oxide glasses. J Chem Phys 115:10935–10944

    Article  Google Scholar 

  26. Sundara Rao M, Sudarsan V, Brik MG, Gandhi Y, Bhargavi K, Piasecki M, Kityk IV, Veeraiah N (2013) De-quenching influence of aluminum ions onY/B ratio of Dy3+ ions in lead silicate glass matrix. J Alloys Compd 575:375–381

    Article  Google Scholar 

  27. Sole JG, Bausa LE, Jaque D (2005) Wiley, New York

  28. Chung WJ, Heo J (2001) Room temperature persistent spectral hole burning in x-ray irradiated Eu3+–doped borate glasses. Appl Phys Lett 79:326–328

    Article  Google Scholar 

  29. Pisarska J (2009) Optical properties of lead borate glasses containing Dy3+ ions. J Phys 21:285101–285106

    Google Scholar 

  30. Shanmugavelu B, Ravi Kanth Kumar VV (2014) Luminescence studies of Dy3+ doped bismuth zinc borate glasses. J Lumin 146:358–363

    Article  Google Scholar 

  31. Linganna K, Srinivasa Rao Ch, Jayasankar CK (2013) Optical properties and generation of white light in Dy3+ doped lead phosphate glasses. J Quant Spectrosc Radiat Transf 118:40–48

    Article  Google Scholar 

  32. Inokuti M, Hirayama F (1965) Influence of energy transfer by the exchange mechanism on donor luminescence. J Chem Phys 43:1978–1989

    Article  Google Scholar 

  33. Yokota M, Tanimoto O (1967) Effects of diffusion on energy transfer by resonance. J Phys Soc Jpn 22:779–784

    Article  Google Scholar 

  34. Martin IR, Rodriguez VD, Rodriguez-Mendoza UR, Lavin V, Montoya E, Jaque D (1999) Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction. J Chem Phys 111:1191–1194

    Article  Google Scholar 

  35. Wang J, Ning G, Gong W, Ye J, Lin Y (2011) Synthesis and luminescence properties of a novel Eu3+, Tb3+ co-doped Al18B4O33 whiskers by a gel nano-coating method. J Mater Sci 46:1259–1263

    Article  Google Scholar 

  36. Culea E, Simiti IV, Borodi G, Culea EN, Stefan R, Pascuta P (2014) Structural and spectroscopic effects of Ag–Eu3+ codoping of TeO2–PbO glass ceramics. J Mater Sci 49:4620–4628

    Article  Google Scholar 

  37. Liu S, Zhao G, Ruan W, Yao Z, Xie T, Jin J, Ying H, Wang J, Han G (2008) Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air. J Am Ceram Soc 91:2740–2742

    Article  Google Scholar 

  38. Fan S, Yu C, He D, Wang X, Hu L (2012) Tunable white light emission from γ-irradiated Ag/Eu co-doped phosphate glass phosphor. Opt Mater Express 2:765–770

    Article  Google Scholar 

  39. Das S, Amarnath Reddy A, Surendra Babu S, Vijaya Prakash G (2011) Controllable white light emission from Dy3+–Eu3+ co-doped KCaBO3 phosphor. J Mater Sci 46:7770–7775

    Article  Google Scholar 

  40. Wang C, Peng M, Jiang N, Jiang X, Zhao C, Qiu J (2007) Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions. Mater Lett 61:3608–3611

    Article  Google Scholar 

  41. Duffy JA (1989) A Common optical bascitity scale for oxide and fluoride glasses. J Non-Cryst Solids 109:35–39

    Article  Google Scholar 

  42. Xu B, Tan D, Zhou S, Hong Z, Sharafudeen KN, Qiu J (2012) Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses. Opt Express 20:29105–29110

    Article  Google Scholar 

  43. Rodriguez CP, McCloy JS, Schweiger MJ, Crum JV, Winschell A (2011) Optical basicity and nepheline crystallization in high alumina glasses. Pacific Northwest National Laboratory Richland, Washington 99354, PNNL20184, EMSP-RPT-003

  44. Paulose PI, Jose G, Thomas V, Unnikrishnan NV, Warrier MKR (2003) Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J Phys Chem Solids 64:841–846

    Article  Google Scholar 

  45. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144

    Article  Google Scholar 

  46. Fred Schubert F(2006) Light emitting diodes (Chapter 17), 2nd edn. Cambridge University Press, Cambridge

Download references

Acknowledgements

The authors would like to acknowledge the central instrumentation facility (CIF), Pondicherry University and University Grants Commission, New Delhi, India for financial support in the form major research Project (No. 39-472/2010). The authors are also thankful to the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Chennai for providing EPR facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ravi Kanth Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari Babu, B., Ravi Kanth Kumar, V.V. Photoluminescence properties and energy transfer in γ-irradiated Dy3+, Eu3+-codoped fluoroaluminoborate glasses. J Mater Sci 49, 7959–7969 (2014). https://doi.org/10.1007/s10853-014-8486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8486-7

Keywords

Navigation