Skip to main content
Log in

Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of colloidal silica on the hydration reaction of the Portland cement system and its effect on the resulting mechanical properties are not completely understood. Silica nanoparticles can affect the behavior and performance of fiber–cement, such as the calcium–silicate–hydrate gel of the matrix and the fiber–matrix interface bonding. The main objective of this study is to evaluate the effects of various contents of colloidal silica (0, 1.5, 3, 5, and 10 % w/w) on the microstructure and mechanical performance of cement composites reinforced with cellulosic pulp. Fiber–cement composites with unbleached eucalyptus Kraft pulp as the micro-fiber reinforcement were produced by the slurry dewatering technique followed by pressing. The average values of the modulus of rupture of the fiber–cement decreased with increasing colloidal silica content. However, the pullout of the fibers increased significantly in the fiber–cement composites with additions between 3 and 10 % w/w of colloidal silica suspension, as indicated in the scanning electron microscopy images and by the improvement in the energy of fracture values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pereira CL, Savastano H Jr, Payá JJ, Santos SF, Borrachero MV, Monzo JM, Soriano L (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind Crops Prod 49:88–96

    Article  Google Scholar 

  2. Marmol G, Santos SF, Savastano H Jr, Borrachero MV, Monzo JM, Payá JJ (2013) Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Ind Crops Prod 49:422–427

    Article  Google Scholar 

  3. Bezerra EM, Joaquim AP, Savastano H Jr, John VM, Agopyan V (2006) The effect of different mineral additions and synthetic fiber contents on properties of cement based composites. Cem Concr Compos 28:555–563

    Article  Google Scholar 

  4. Tonoli GHD, Rodrigues Filho UP, Savastano H Jr, Bras J, Belgacem MN, Rocco Lahr FA (2009) Cellulose modified fibres in cement based composites. Compos A 40:2046–2053

    Article  Google Scholar 

  5. Tonoli GHD, Belgacem MN, Bras J, Pereira-Da-Silva MA, Rocco Lahr FA, Savastano H Jr (2012) Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 47:4167–4177. doi:10.1007/s10853-012-6271-z

    Article  Google Scholar 

  6. Tonoli GHD, Mendes RF, Siqueira G, Bras J, Belgacem MN, Savastano H Jr (2013) Isocyanate-treated cellulose pulp and its effect on the alkaly resistance and performance of fiber cement composites. Holzforschung 67(8):853–861

    Article  Google Scholar 

  7. Villar-Cociña E, Valencia-Morales E, González-Rodríguez R, Hernández-Ruíz J (2003) Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: a kinetic–diffusive model. Cem Concr Res 4(33):517–524

    Article  Google Scholar 

  8. Barbosa RS, John VM (2010) The influence of silica fume on the mechanical strength and drying shrinkage of fiber cement reinforced with PVA fiber. In: Proceedings of international inorganic-bonded fiber-composite conference-IIBCC, pp 80–89

  9. Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ (2011) Mechanisms of cement hydration. Cem Concr Res 41:1208–1223

    Article  Google Scholar 

  10. Jacobsen VJ, Rodrigues MS, Telling MTL, Beraldo AL, Santos SF, Aldrige LP, Bordallo HN (2013) Nano-scale hydrogen-bond network improves the durability of greener cements. Sci Rep 3:1–6

    Article  Google Scholar 

  11. Korpa A, Kowald T, Trettin R (2008) Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cem Concr Res 38:955–962

    Article  Google Scholar 

  12. Björnström J, Martinelli A, Matic A, Börjesson L, Panas I (2004) Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem Phys Lett 392:242–248

    Google Scholar 

  13. Nelson JA, Young JF (1977) Additions of colloidal silica and silicates to Portland cement pastes. Cem Concr Res 7:277–282

    Article  Google Scholar 

  14. Pacheco-Torgal F, Miraldo S, Ding Y, Labrincha JA (2013) Targeting HPC with the help of nanoparticles: an overview. Constr Build Mater 38:365–370

    Article  Google Scholar 

  15. Kawashima S, Hou P, Corr DJ, Shah SP (2013) Modification of cement-based materials with nanoparticles. Cem Concr Compos 36:8–15

    Article  Google Scholar 

  16. Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction: summary of a state-of-the-art report. Mater Struct 37:649–658

    Article  Google Scholar 

  17. Zhang M-H, Islam J (2012) Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater 29:573–580

    Article  Google Scholar 

  18. Kontoleontos F, Tsakiridis PE, Marinos A, Kaloidas V, Katsioti M (2012) Influence of colloidal nanosilica on ultrafine cement hydration: physicochemical and microstructural characterization. Constr Build Mater 35:347–360

    Article  Google Scholar 

  19. Korpa A, Trettin R, Böttger KG, Thieme J, Schmidt C (2008) Pozzolanic reactivity of nanoscale pyrogene oxides and their strength contribution in cement-based systems. Adv Cem Res 20(1):35–46

    Article  Google Scholar 

  20. Qing Y, Zenan ZG, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21:539–545

    Article  Google Scholar 

  21. Bergna HE, Roberts WO (2006) Colloidal silica: fundamentals and applications. CRC Press and Taylor & Francis Group, London

    Google Scholar 

  22. Iler RK (1979) Chemistry of silica: solubility, polymerization, colloid and surfaces properties and biochemistry. John Wiley & Sons, New York

    Google Scholar 

  23. American Society for Testing and Materials-ASTM C150/C150M-11 Standard Specification for Portland Cement, 2011

  24. Tonoli GHD, Almeida AEFS, Pereira-Da-Silva MA, Bassa A, Oyakawa D, Savastano H Jr (2010) Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites. Holzforschung 64:595–601

    Google Scholar 

  25. Tonoli GHD, Savastano H Jr, Fuente E, Negro C, Blanco A, Rocco Lahr FA (2010) Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind Crops Prod 31:225–232

    Article  Google Scholar 

  26. Tonoli GHD, Fuente E, Monte C, Savastano H Jr, Rocco Lahr FA, Blanco A (2009) Effect of fibre morphology on flocculation of fibre–cement suspensions. Cem Concr Res 39:1017–1022

    Article  Google Scholar 

  27. Chawla KK (1987) Composite materials science and engineering. Springer-Verlag, New York

    Google Scholar 

  28. Sakai M, Bradt RC (1993) Fracture toughness testing of brittle materials. Int Mater Rev 38:53–78

    Article  Google Scholar 

  29. Nakayama J (1965) Direct measurement of fracture energies of brittle heterogeneous materials. J Am Ceram Soc 48:583–587

    Article  Google Scholar 

  30. Ribeiro S, Rodrigues JA (2010) The influence of microstructure on the maximum load and fracture energy of refractory castables. Ceram Int 36:263–274

    Article  Google Scholar 

  31. Kajita Y, Kariya S, Kozuka H, Holanda T, Ota S (1997) Development a method for quantitative assessment of flexibility and its application for evaluating MgO–CaO–ZrO2 bricks. In: Proceedings of UNITECR, pp 337–345

  32. Villar-Cociña E, Morales EV, Santos SF, Savastano H Jr, Frías M (2011) Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem Concr Compos 33:68–73

    Article  Google Scholar 

  33. Taylor HFW (1997) Cement chemistry. Thomas Telford Publishing, London

    Book  Google Scholar 

  34. Thomas JJ, Jennings HM, Chen JJ (2009) Influence of nucleation needing on the hydration mechanisms of tricalcium silicate and cement. J Phys Chem C 113(11):4327–4334

    Article  Google Scholar 

  35. Dunstetter F, de Noirfontaine M-N, Courtial M (2006) Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 1. Structural data: review and unified analysis. Cem Concr Res 36:39–53

    Article  Google Scholar 

  36. De Noirfontaine M-N, Dunstetter F, Courtial M, Gasecki G, Signes-Frehel M (2006) Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 2. Modelling alite for Rietveld analysis, an industrial challenge. Cem Concr Res 36:54–64

    Article  Google Scholar 

  37. Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat Mater 6:311–316

    Google Scholar 

  38. Hou P-K, Kawashima S, Wang K-J, Corr DJ, Qian J-S, Shah SP (2013) Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cem Concr Compos 35:12–22

    Article  Google Scholar 

  39. Senff L, Labrincha JA, Ferreira VM, Hotza D, Repette WL (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr Build Mater 23:2487–2491

    Article  Google Scholar 

  40. Shin K-J, Lee K-M, Chang S-P (2010) Effect of pre-debonding on crack bridging behavior of fiber-reinforced cementitious composite. J Compos Mater 44(3):269–286

    Article  Google Scholar 

  41. Berra M, Carassiti F, Mangialardi T, Paolini AE, Sebastiani M (2012) Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr Build Mater 35:666–675

    Article  Google Scholar 

  42. Padevět P, Zobal O (2011) Comparison of fracture energy of various cement pastes. In: Nikos M et al (eds) Proceedings of the 4th WSEAS international conference on engineering mechanics, structures, engineering geology (EMESEG 2011), Corfu Island, Greece, pp 433–438

  43. Ribeiro S, Ribeiro DC, Dias MBS, Garcia GCR, Santos EMB (2011) Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates. Mater Res 14(1):46–52

    Article  Google Scholar 

  44. Li CY, Mobasher B (1998) Finite element simulations of fiber pullout toughening in fiber reinforced cement based composites. Adv Cem Based Mater 7:123–132

    Article  Google Scholar 

  45. Bentur A, Mindess S (2007) Fibre reinforced cementitious composites, modern concrete technology series, 2nd edn. Taylor & Francis Group, New York

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian financial support from the São Paulo Research Foundation (FAPESP, Grants Nos: 2008/04769-9, 2009/10614-0, 2009/17293-5; 2010/16524-0), the National Council for Scientific and Technological Development (CNPq, Grants Nos: 472133/2009-8, 305792/2009-1 and 303061/2009-0), and the Minas Gerais Research Foundation (FAPEMIG). We would also like to extend special thanks to Dr. Gustavo Rocha de Paula, Dr. Rui Barbosa de Souza and the Brazilian companies Akzonobel Brasil S.A., Fibria Celulose S.A. and Infibra Ltda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Francisco Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, S.F., Rodrigues, J.A., Tonoli, G.H.D. et al. Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers. J Mater Sci 49, 7497–7506 (2014). https://doi.org/10.1007/s10853-014-8455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8455-1

Keywords

Navigation