Skip to main content
Log in

Anisotropic diffusion of hydrogen in nanoporous carbons

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is accepted that hydrogen transport capacity through carbons depends on the anisotropy of the empty spaces that constitute their porous structure. However, very little is known about this relationship. Computational simulation is an excellent tool to accomplish this kind of studies. Simulation requires digital representations of materials and a model describing the interaction potential among the gas molecules and the solids surfaces. In this work, it is proposed to use the analytical solutions of the truncated pore problem for modeling the potentials, and an immiscible lattice gas for obtaining the representations. The degree of anisotropy was quantified by using the mean intercept length method. The adsorption isotherms and the self-diffusion coefficients in the three orthogonal directions were found by the grand canonical and kinetic Monte Carlo methods, respectively. The results suggest the existence of a gas pressure at which a molecular saturation threshold (P s) is reached. P s determines if the degree of anisotropy is or not a representative variable of diffusive transport. For P ≤ P s, the degree of anisotropy favors the molecular mobility. When P > P s, the degree of anisotropy loses influence on mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C (2004) Hydrogen storage in activated carbon materials: role of the nanoporous texture. Carbon 42:2744–2747

    Article  Google Scholar 

  2. Yang SJ, Jung H, Kim T, Park CR (2012) Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Prog Nat Sci Mater Int 22:631–638

    Article  Google Scholar 

  3. Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47:4966–4981

    Article  Google Scholar 

  4. Wang L, Yang FH, Yang RT (2009) Hydrogen storage properties of B- and N-doped microporous carbon. AIChE J 55:1823–1833

    Article  Google Scholar 

  5. Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833

    Article  Google Scholar 

  6. Panella B, Hirscher M, Roth S (2005) Hydrogen adsorption in different carbon nanostructures. Carbon 43:2209–2214

    Article  Google Scholar 

  7. Xu WC, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S (2007) Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy 32:2504–2512

    Article  Google Scholar 

  8. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398

    Article  Google Scholar 

  9. Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE (2009) Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrogen Energy 34:6314–6319

    Article  Google Scholar 

  10. Palmer JC, Gubbins KE (2012) Atomistic models for disordered nanoporous carbons using reactive force fields. Microporous Mesoporous Mater 154:24–37

    Article  Google Scholar 

  11. Biggs M, Agarwal P (1992) Mass diffusion of atomic fluids in random micropore spaces using equilibrium molecular dynamics. Phys Rev A 46:3312–3318

    Article  Google Scholar 

  12. Biggs MJ, Buts A (2006) Virtual porous carbons: what they are and what they can be used for. Mol Simul 32:579–593

    Article  Google Scholar 

  13. Harris PJF, Tsang SC (1997) High-resolution electron microscopy studies of non-graphitizing carbons. Philos Mag A 76:667–677

    Article  Google Scholar 

  14. Palmer JC, Llobet A, Yeon SH, Fischer JE, Shi Y, Gogotsi Y, Gubbins KE (2010) Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48:1116–1123

    Article  Google Scholar 

  15. Shi Y (2008) A mimetic porous carbon model by quench molecular dynamics simulation. J Chem Phys 128:1–11

    Article  Google Scholar 

  16. Jain SK, Pellenq RJM, Pikunic JP, Gubbins KE (2006) Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. Langmuir 22:9942–9948

    Article  Google Scholar 

  17. Opletal G, Petersen TC, McCulloch DG, Snook IK, Yarovsky I (2005) The structure of disordered carbon solids studied using a hybrid reverse Monte Carlo algorithm. J Phys Condens Matter 17:2605–2616

    Article  Google Scholar 

  18. Nguyen TX, Cohaut N, Bae J-S, Bhatia SK (2008) New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 24:7912–7922

    Article  Google Scholar 

  19. Palmer JC, Brennan JK, Hurley MM, Balboa A, Gubbins KE (2009) Detailed structural models for activated carbons from molecular simulation. Carbon 47:2904–2913

    Article  Google Scholar 

  20. Azevedo DCS, Rios RB, López RH, Torres AEB, Cavalcante CL, Toso JP, Zgrablich G (2010) Characterization of PSD of activated carbons by using slit and triangular pore geometries. Appl Surf Sci 256:5191–5197

    Article  Google Scholar 

  21. Soares Maia DA, Sapag K, Toso JP, López RH, Azevedo DCS, Cavalcante CL Jr, Zgrablich G (2010) Characterization of activated carbons from peach stones through the mixed geometry model. Microporous Mesoporous Mater 134:181–188

    Article  Google Scholar 

  22. Bojan MJ, Steele WA (1998) Computer simulation in pores with rectangular cross-sections. Carbon 36:1417–1423

    Article  Google Scholar 

  23. Bojan MJ, van Slooten R, Steele W (1992) Computer simulation studies of the storage of methane in microporous carbons. Sep Sci Technol 27:1837–1856

    Article  Google Scholar 

  24. Davies GM, Seaton NA (1998) The effect of the choice of pore model on the characterization of the internal structure of microporous carbons using pore size distributions. Carbon 36:1473–1490

    Article  Google Scholar 

  25. Bojan MJ, Steele WA (1989) Computer simulation of physisorbed krypton on a heterogeneous surface. Langmuir 5:625–633

    Article  Google Scholar 

  26. Ramírez Vélez A (2011) Truncated pore network model for the methane and hydrogen adsorption in disordered nanoporous carbons. Comput Mater Sci 50:1016–1021

    Article  Google Scholar 

  27. Cai Q, Buts A, Seaton NA, Biggs MJ (2008) A pore network model for diffusion in nanoporous carbons: validation by molecular dynamics simulation. Chem Eng Sci 63:3319–3327

    Article  Google Scholar 

  28. Ramírez A (2011) A kinetic Monte Carlo approach to diffusion in disordered nanoporous carbons. Chem Eng Sci 66:5663–5671

    Google Scholar 

  29. Ramirez A, Jaramillo DE (2012) Porous media generated by using an immiscible lattice-gas model. Comput Mater Sci 65:157–164

    Article  Google Scholar 

  30. Rothman DH, Zaleski S (1997) Lattice-gas cellular automata. Simple models of complex hydrodynamics, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Rothman DH, Zaleski S (1994) Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow. Rev Mod Phys 66:1417–1479

    Article  Google Scholar 

  32. Suzuki T, Kaneko K, Setoyama N, Maddox M, Gubbins K (1996) Grand canonical Monte Carlo simulation for nitrogen adsorption in graphitic slit micropores: effect of interlayer distance. Carbon 34:909–912

    Article  Google Scholar 

  33. Inglis D, Pietruszczak S (2003) Characterization of anisotropy in porous media by means of linear intercept measurements. Int J Solids Struct 40:1243–1264

    Article  Google Scholar 

  34. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  Google Scholar 

  35. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  Google Scholar 

  36. Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  Google Scholar 

  37. Ketcham RA, Ryan TM (2004) Quantification and visualization of anisotropy in trabecular bone. J Microsc 213:158–171

    Article  Google Scholar 

  38. Nguyen TX, Bae JS, Wang Y, Bhatia SK (2009) On the strength of the hydrogen–carbon interaction as deduced from physisorption. Langmuir 25:4314–4319

    Article  Google Scholar 

  39. Singh AK, Lu J, Aga RS, Yakobson BI (2010) Hydrogen storage capacity of carbon-foams: grand canonical Monte Carlo simulations. J Phys Chem C 115:2476–2482

    Article  Google Scholar 

  40. Kostov MK, Cheng H, Cooper AC, Pez GP (2002) Influence of carbon curvature on molecular adsorptions in carbon-based materials: a force field approach. Phys Rev Lett 89:146105

    Article  Google Scholar 

  41. Kowalczyk P, Gauden PA, Terzyk AP, Bhatia SK (2007) Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations. Langmuir 23:3666–3672

    Article  Google Scholar 

  42. Wang S, Senbetu L, Woo C-W (1980) Superlattice of parahydrogen physisorbed on graphite surface. J Low Temp Phys 41:611–628

    Article  Google Scholar 

  43. Gusev VY, O’Brien JA, Seaton NA (1997) A self-consistent method for characterization of activated carbons using supercritical adsorption and grand canonical Monte Carlo simulations. Langmuir 13:2815–2821

    Article  Google Scholar 

  44. Lachet V, Boutin A, Tavitian B, Fuchs AH (1997) Grand canonical Monte Carlo simulations of adsorption of mixtures of xylene molecules in faujasite zeolites. Faraday Discuss 106:307–323

    Article  Google Scholar 

  45. Valfouskaya A, Adler PM (2005) Nuclear-magnetic-resonance diffusion simulations in two phases in porous media. Phys Rev E 72:056317

    Article  Google Scholar 

  46. Burket CL, Rajagopalan R, Foley HC (2007) Synthesis of nanoporous carbon with pre-graphitic domains. Carbon 45:2307–2310

    Article  Google Scholar 

  47. Vander Wal R, Tomasek A, Pamphlet M, Taylor C, Thompson W (2004) Analysis of HRTEM images for carbon nanostructure quantification. J Nanopart Res 6:555–568

    Article  Google Scholar 

  48. Kimmich R (2002) Strange kinetics, porous media, and NMR. Chem Phys 284:253–285

    Article  Google Scholar 

  49. Armandi M, Bonelli B, Cho K, Ryoo R, Garrone E (2011) Study of hydrogen physisorption on nanoporous carbon materials of different origin. Int J Hydrogen Energy 36:7937–7943

    Article  Google Scholar 

  50. Kowalczyk P, Hołyst R, Terzyk AP, Gauden PA (2006) State of hydrogen in idealized carbon slitlike nanopores at 77 K. Langmuir 22:1970–1972

    Article  Google Scholar 

  51. Kabbour H, Baumann TF, Satcher JH, Saulnier A, Ahn CC (2006) Toward new candidates for hydrogen storage: high-Surface-area carbon aerogels. Chem Mater 18:6085–6087

    Article  Google Scholar 

  52. Blanco AAG, de Oliveira JCA, López R, Moreno-Piraján JC, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A 357:74–83

    Article  Google Scholar 

  53. Jiménez V, Sánchez P, Díaz JA, Valverde JL, Romero A (2010) Hydrogen storage capacity on different carbon materials. Chem Phys Lett 485:152–155

    Article  Google Scholar 

  54. Chathoth SM, Mamontov E, Melnichenko YB, Zamponi M (2010) Diffusion and adsorption of methane confined in nano-porous carbon aerogel: a combined quasi-elastic and small-angle neutron scattering study. Microporous Mesoporous Mater 132:148–153

    Article  Google Scholar 

  55. Do HD, Do DD, Prasetyo I (2001) On the surface diffusion of hydrocarbons in microporous activated carbon. Chem Eng Sci 56:4351–4368

    Article  Google Scholar 

  56. Nguyen TX, Jobic H, Bhatia SK (2010) Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material. Phys Rev Lett 105:085901

    Article  Google Scholar 

  57. Narehood DG, Pearce JV, Eklund PC, Sokol PE, Lechner RE, Pieper J, Copley JRD, Cook JC (2003) Diffusion of H2 adsorbed on single-walled carbon nanotubes. Phys Rev B 67:205409

    Article  Google Scholar 

  58. Haas O-E, Simon JM, Kjelstrup S, Ramstad AL, Fouquet P (2008) Quasi-elastic neutron scattering investigation of the hydrogen surface self-diffusion on polymer electrolyte membrane fuel cell catalyst support. J Phys Chem C 112:3121–3125

    Article  Google Scholar 

  59. Liu ZY, Zhang JL, Yu PT, Zhang JX, Makharia R, More KL, Stach EA (2010) Transmission electron microscopy observation of corrosion behaviors of platinized carbon blacks under thermal and electrochemical conditions. J Electrochem Soc 157:B906–B913

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges to the University of Antioquia for the time granted for the development of this work (CODI document 667, 2013. Project code number 10212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ramirez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, A. Anisotropic diffusion of hydrogen in nanoporous carbons. J Mater Sci 49, 7087–7098 (2014). https://doi.org/10.1007/s10853-014-8415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8415-9

Keywords

Navigation