Skip to main content
Log in

Molybdenum ion: a structural probe in lithium–antimony–germanate glass system by means of dielectric and spectroscopic studies

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we have synthesized multi-component 10Li2O–(30 − x)Sb2O3–40GeO2–20PbO:x MoO3 (with five values of x ranging from 1.0 to 9.0) and investigated dielectric properties over a frequency range of 102–106 Hz and in the temperature range 30–300 °C of these samples. The evaluated dielectric parameters include dielectric constant, ε′(ω); ac conductivity, σ ac; and electric modulus, M(ω). The results were interpreted with the aid of the experimental data on optical absorption, IR, Raman, and ESR spectroscopy. The analysis of the results of spectroscopic studies have indicated that a considerable proportion of molybdenum ions reduce to Mo5+ state, form molybdenyl complexes, occupy octahedral positions, act as modifiers, and create dangling bonds in the glass network. The concentration of such molybdenyl complexes seemed to be increasing with increase in the concentration of MoO3. The temperature dispersion of real part of dielectric constant, ε′(ω), has been analyzed using space charge polarization model. The frequency and temperature dependence of the dielectric loss parameters have exhibited relaxation character. The relaxation effects have been attributed to molybdenyl complexes and to the divalent lead ions. Electrical conductivity exhibited an increasing trend and the activation energy showed a decreasing trend with increase in the concentration of MoO3. The increase of conductivity is attributed to (i) the increasing concentration of polaron Mo5+–Mo6+ pairs and (ii) increase in the concentration of dangling bonds in the glass network that causes the substantial decrement in jump distance for Li+ ions, which contribute to ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rada S, Culea E, Chelcea R, Rada M, Bot A, Aldea N, Rednic V (2013) Physical properties and electrochemical performance of molybdenum–lead–germanate glasses and glass ceramics. Ceram Int 39:1403–1411

    Article  Google Scholar 

  2. El Batal FH, Abdelghany AM, Elwan RL (2011) Structural characterization of gamma irradiated lithium phosphate glasses containing variable amounts of molybdenum. J Mol Struct 1000:103–108

    Article  Google Scholar 

  3. Padmanabham A, Ravi Kumar V, Satyanarayana T, Veeraiah N (2009) Induced crystallization and the physical properties of PbO–Sb2O3–As2O3: MoO3 glass system. J Phys Chem Solids 70:669–679

    Article  Google Scholar 

  4. Hussain Z (2002) Optical and electrochromic properties of annealed lithium–molybdenum–bronze thin films. J Electron Mater 31:615–630

    Article  Google Scholar 

  5. Doweidar H (2011) Considerations on the structure and physical properties of B2O3–SiO2 and GeO2–SiO2 glasses. J Non-Cryst Solids 357:1665–1670

    Article  Google Scholar 

  6. Nalin M, Poulain M, Ribeiro JL, Messaddeq Y (2001) Antimony oxide based glasses. J Non-Cryst Solids 284:110–116

    Article  Google Scholar 

  7. Satyanarayana T, Kityk IV, Gandhi Y, Ravi Kumar V, Kuznik W, Piasecki M, Valentie MA, Veeraiah N (2010) Optically induced effects in nano-crystallized PbO–Sb2O3–B2O3:Pr2O3 glasses. J Alloy Compd 500:9–15

    Article  Google Scholar 

  8. Raghavaiah BV, Laxmikanth C, Veeraiah N (2004) Spectroscopic studies of titanium ions in PbO–Sb2O3:As2O3 glass system. Opt Commun 235:341–349

    Article  Google Scholar 

  9. Irimpan L, Krishnan B, Nampoori VPN, Radhakrishnan P (2008) Nonlinear optical characteristics of nanocomposites of ZnO–TiO2–SiO2. Opt Mater 31:361–365

    Article  Google Scholar 

  10. Zelniok D, Cramer C, Eckert H (2007) Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O–B2O3–P2O5. Chem Mater 19:3162–3170

    Article  Google Scholar 

  11. Vladimír L, Marcel P, Marian K, Viera T, Fayçal G (2013) Electrical, dielectric and optical properties of Sb2O3–PbCl2–MoO3 glasses. J Non-Cryst Solids 377:66–69

    Article  Google Scholar 

  12. Song J, Chen G, Yuan C, Yang Y (2014) Effect of the Sr/Ba ratio on the microstructures and dielectric properties of SrO–BaO–Nb2O5–B2O3 glass–ceramics. Mater Lett 117:7–9

    Article  Google Scholar 

  13. Pavić L, Narasimha Rao N, Moguš-Milanković A, Šantić A, Ravi Kumar V, Piasecki M, Kityk IV, Veeraiah N (2014) Physical properties of ZnF2–PbO–TeO2:TiO2 glass ceramics—Part III dielectric dispersion and ac conduction phenomena. Ceram Int 40:5989–5996

    Article  Google Scholar 

  14. Balaji Rao R, Gopal NO, Veeraiah N (2004) Studies on the influence of V2O5 on dielectric relaxation and ac conduction phenomena of Li2O–MgO–B2O3 glass system. J Alloy Compd 368:25–37

    Article  Google Scholar 

  15. Vijay R, Ramesh Babu P, Raghavaiah BV, Vinaya Teja PM, Piasecki M, Veeraiah N, Krishna Rao D (2014) Influence of modifier oxide on dielectric dispersion and a.c. conduction phenomena of Li2O–Sb2O3–GeO2 glass system. J Non-Cryst Solids 386:67–75

    Article  Google Scholar 

  16. Umesaki N, Brunier TM, Wright AC, Hannon AC, Sinclair RN (1995) Neutron scattering from PbO–GeO2 glasses. Physica B 213:490–492

    Article  Google Scholar 

  17. Alderman OLG, Hannon AC, Holland D, Umesaki N (2014) On the germanium–oxygen coordination number in lead germanate glasses. J Non-Cryst Solids 386:56–60

    Article  Google Scholar 

  18. Nanba T, Miyaji T, Takada J, Osaka A, Miura Y, Yasui I (1994) Computer simulation on the structure and vibrational spectra in GePbOF glass. J Non-Cryst Solids 177:131–136

    Article  Google Scholar 

  19. Ghigna P, Mustarelli P, Tomasi C, Quartarone E, Scavini M, Speghini A, Bettinelli M (2002) A combined nuclear magnetic resonance and X-ray absorption fine structure study on the local structures of Ge and Pb in PbO–GeO2 glasses and their relationships with thermal properties and devitrification products. Phys Chem B 106:9802–9809

    Article  Google Scholar 

  20. Ribeiro SJL, Dexpertghys J, Piriou B, Mastelaro VR (1993) Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy. J Non-Cryst Solids 159:213–221

    Article  Google Scholar 

  21. Rada S, Culea E (2011) Structural and optical properties in gadolinium–aluminum–lead–germanate quaternary glasses. J Non-Cryst Solids 357:1724–1728

    Article  Google Scholar 

  22. Rada S, Chelcea R, Culea E (2011) Experimental and theoretical investigations on the structure-properties interrelationship of the gadolinium–vanadate–germanate glasses. J Mol Model 17:165–171

    Article  Google Scholar 

  23. Rada M, Maties V, Culea M, Rada S, Culea E (2010) Dual role of the six-coordinated molybdenum and lead ions in novel of photochromic properties of the molybdenum–lead–borate glasses. Spectrochim Acta A 75:507–510

    Article  Google Scholar 

  24. Böttcher CJF, Bordewijk P (1978) Theory of electrical polarization. Elsevier, Amsterdam

    Google Scholar 

  25. Krishna Mohan N, Rami Reddy M, Veeraiah N (2008) Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system. J Alloy Compd 458:66–76

    Article  Google Scholar 

  26. Filipič C, Moguš-Milanković A, Pavić L, Srilatha K, Veeraiah N, Levstik A (2012) Polaronic behavior of MnO doped LiI–AgI–B2O3 glass. J Appl Phys 112:073705–073709

    Article  Google Scholar 

  27. Srinivasa Reddy M, Prasad SVGVA, Veeraiah N (2007) Valence and coordination of chromium ions in ZnO–Sb2O3–B2O3 glass system by means of spectroscopic and dielectric relaxation studies. Phys Status Solidi A 204:816–832

    Article  Google Scholar 

  28. Vinaya Teja PM, Rajyasree Ch, Murali Krishna SB, Tirupataiah Ch, Krishna Rao D (2012) Effect of some VA group modifiers on R2O3 (R = Sb, Bi)–ZnF2–GeO2 glasses doped with CuO by means of spectroscopic and dielectric investigations. Mater Chem Phys 133:239–248

    Article  Google Scholar 

  29. Galeener FL, Geissberger AE, Ogar GW Jr, Loehman RE (1983) Vibrational dynamics in isotopically substituted vitreous GeO2. Phys Rev B 28:4768–4773

    Article  Google Scholar 

  30. Beattie IR, Livingston KMS, Renolds DJ (1970) Single-crystal Raman spectra of arsenolite (As4O6) and senarmonite (Sb4O6). The gas-phase Raman spectra of P4O6, P4O10, and As4O6. J Chem Soc A:449–451

    Article  Google Scholar 

  31. Baia L, Iliescu T, Simonb S, Kiefer W (2001) Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses. J Mol Struct 599:9–13

    Article  Google Scholar 

  32. Srinivasa Reddy M, Sridhar Raja VLN, Veeraiah N (2007) Molybdenum ion as a structural probe in PbO–Sb2O3–B2O3 glass system by means of dielectric and spectroscopic investigations. Eur Phys J Appl Phys 37:203–211

    Article  Google Scholar 

  33. Mogus-Milankovic A, Santic A, Gajovic A, Day DE (2003) Spectroscopic investigation of MoO3–Fe2O3–P2O5 and SrO–Fe2O3–P2O5 glasses. J Non-Cryst Solids 325:76–84

    Article  Google Scholar 

  34. Rada S, Chelcea R, Rada M, Bot A, Aldea N, Rednic V, Culea E (2013) Electrochemical characterization and structure of tungsten–lead–germanate glasses and glass ceramics. Electrochim Acta 109:82–88

    Article  Google Scholar 

  35. Dubois B, Videau JJ, Portier J (1986) Structural approach of the (xPbCl2–(1 − x)Sb2O3) glass system. J Non-Cryst Solids 88:355–365

    Article  Google Scholar 

  36. Miller PJ, Cody CA (1982) Infrared and Raman investigation of vitreous antimony trioxide. Spectrochim Acta A 38:555–559

    Article  Google Scholar 

  37. Raghavaiah BV, Veeraiah N (2003) The improved glass forming ability and some physical properties of PbO–Sb2O3:Cr2O3 glasses with As2O3 as additive. Phys Status Solidi A 199:389–402

    Article  Google Scholar 

  38. Syam Prasad P, Srinivasa Reddy M, Ravi Kumar V, Veeraiah N (2007) Spectroscopic and dielectric studies on PbO–MoO3–B2O3 glasses incorporating small concentrations of TiO2. Philos Mag 87:5763–5787

    Article  Google Scholar 

  39. Morinaga K, Yoshida H, Takebe H (1994) Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses. J Am Ceram Soc 77:3113–3118

    Article  Google Scholar 

  40. Iordanova R, Dimitriev Y, Dimitrov V, Kassabov S, Klissurski D (1998) Glass formation and structure in the system MoO3–Bi2O3–Fe2O3. J Non-Cryst Solids 231:227–233

    Article  Google Scholar 

  41. Rada M, Chelcea R, Rada S, Rus L, Dura N, Ristoiu T, Rusu T, Culea E (2013) Effect of aluminum oxide codoping on copper–lead–germanate glasses. Spectrochim Acta A 102:414–418

    Article  Google Scholar 

  42. Calas G, Le Grand M, Galoisy L, Ghaleb D (2003) Structural role of molybdenum in nuclear glasses: an EXAFS study. J Nucl Mater 322:15–20

    Article  Google Scholar 

  43. Cozar O, Magdas DA, Ardelean I (2008) EPR study of molybdenum–lead–phosphate glasses. J Non-Cryst Solids 354:1032–1035

    Article  Google Scholar 

  44. Chowdari BVR, Radha Krishnan K (1989) Ionic conductivity studies of the vitreous Li2O:P2O5:Ta2O5 system. J Non-Cryst Solids 108:323–332

    Article  Google Scholar 

  45. Selvaraj U, Rao KJ (1988) ESR and optical studies of Mo5+ and W5+ ions in phosphomolybdate and phosphotungstate glasses. Chem Phys 123:141–150

    Article  Google Scholar 

  46. Cozar O, Ardelean I, Simon S, David L (1993) ESR studies of Mo5+ ions in potassium–borate and soda–phosphate glasses. Solid State Commun 85:461–465

    Article  Google Scholar 

  47. Boudlich D, Haddad M, Nadiri A, Berger R, Kliava J (1998) Mo5+ ions as EPR structural probes in molybdenum phosphate glasses. J Non-Cryst Solids 224:135–142

    Article  Google Scholar 

  48. Bals A, Kliava J (1983) Simulations of EPR spectra for d1 ions with distributed spin Hamiltonian parameters. J Magn Reson 53:243–258

    Google Scholar 

  49. Nagarjuna M, Satyanarayana T, Ravi Kumar V, Veeraiah N (2009) Ag concentration dependent transport properties of LiF–MoO3–P2O5 glasses. Physica B 404:3748–3755

    Article  Google Scholar 

  50. Srinivasarao G, Veeraiah N (2002) Characterization and physical properties of PbO–As2O3 glasses containing molybdenum ions. J Solid State Chem 166:104–117

    Article  Google Scholar 

  51. Durga DK, Veeraiah N (2001) Study on ZnF2–P2O5–TeO2 glass system by dielectric properties, IR spectra and differential thermal analysis. Indian J Pure Appl Phys 39:382–391

    Google Scholar 

  52. Veerabhadra Rao A, Laxmikanth C, Appa Rao B, Veeraiah N (2006) Dielectric relaxation and a.c. conduction phenomena of PbO–PbF2–B2O3 glasses doped with FeO. J Phys Chem Solids 67:2263–2274

    Article  Google Scholar 

  53. Satyanarayana T, Kityk IV, Piasecki M, Bragiel P, Brik MG, Gandhi Y, Veeraiah N (2009) Structural investigations on PbO–Sb2O3–B2O3: CoO glass ceramics by means of spectroscopic and dielectric studies. J Phys Condens Matter 21:245104–245112

    Article  Google Scholar 

  54. Langar A, Sdiri N, Elhouichet H, Ferid M (2014) Conductivity and dielectric behavior of NaPO3–ZnO–V2O5 glasses. J Alloy Compd 590:380–387

    Article  Google Scholar 

  55. Xue S, Wang J, Liu S, Zhang W, Tang L, Shen B, Zhai J (2014) Effect of the Ba/Na ratio on the microstructure and dielectric properties of (BaO, Na2O)–Nb2O5–SiO2 glass–ceramics. Ceram Int 40:7495–7499

    Article  Google Scholar 

  56. Szreder NA, Barczyński RJ, Karczewski J, Gazda M (2014) Electrical properties and structure of lead–borate glass containing iron ions. Solid State Ionics. doi:10.1016/j.ssi.2014.01.042

    Google Scholar 

  57. Mukherjee S, Pal AK (2008) Size-dependent magnetic properties of VO2 nanocrystals dispersed in a silica matrix. J Phys Condens Matter 20:255202–255211

    Article  Google Scholar 

  58. Gajovic A, Santic A, Djerdj I, Tomasic N, Mogus-Milankovic A, Sheng SuD (2009) Structure and electrical conductivity of porous zirconium titanate ceramics produced by mechanochemical treatment and sintering. J Alloy Compd 479:525–531

    Article  Google Scholar 

  59. Srikumar T, Srinvasa Rao Ch, Gandhi Y, Venkatramaiah N, Ravikumar V, Veeraiah N (2011) Dielectric and spectroscopic properties of Li2O–Nb2O5–ZrO2–SiO2 glass system crystallized with V2O5. J Phys Chem Solids 72:190–200

    Article  Google Scholar 

  60. Naresh P, Naga Raju G, Ravi Kumar V, Piasecki M, Kiytyk IV, Veeraiah N (2014) Optical and dielectric features of zinc oxy fluoro borate glass ceramics with TiO2 as crystallizing agent. Ceram Int 40:2249–2260

    Article  Google Scholar 

  61. Ting W, Yongping P, Chen K (2013) Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram Int 39:6787–6793

    Article  Google Scholar 

  62. Elliott SR (1987) Physics of amorphous materials. Adv Phys 36:135

    Article  Google Scholar 

  63. Cramer C, Funke K, Roling B, Saatkamp T, Wilmer D, Ingram MD, Pradel A, Ribes M, Taillades G (1996) Ionic and polaronic hopping in glass. Solid State Ionics 86:481–486

    Article  Google Scholar 

  64. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors namely R. Vijay and P. Ramesh Babu are thankful to the University Grants Commission (U.G.C), New Delhi, India for awarding research fellowship under meritorious student scheme. The authors are also grateful to Department of Science and Technology (DST), Govt. India, for the financial support through FIST programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Veeraiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, R., Ramesh Babu, P., Gandhi, Y. et al. Molybdenum ion: a structural probe in lithium–antimony–germanate glass system by means of dielectric and spectroscopic studies. J Mater Sci 49, 6203–6216 (2014). https://doi.org/10.1007/s10853-014-8345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8345-6

Keywords

Navigation