Skip to main content
Log in

Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a method based on a multiple emulsions system was developed for the production of polymeric nano and micro-vectors. The possibility to apply an unified preparation technique to different polymers, such as polyesters [polycaprolactone, poly-dl-lactide, poly(dl-lactide-co-caprolactone) = 70/30] and polyacrylates [poly(methylmethacrylate–acrylic acid) = 73/27], loaded with different model molecules (budesonide, tamoxifen, and α-tocopherol) was explored. After selecting the best operating conditions, especially for emulsification and separation, the technique proved to be readily adaptable for production of both nano and micro-particles with different morphologies, depending on type of polymer, and consequently on solvent used for solubilization: nano-particles, with a round shape and a smooth surface, for polyesters, otherwise micro-particles for the polyacrylate polymer, owing to the presence of hydrophilic co-solvents, that caused both an easy coalescence between the oil and water phases, thus enlarged particles size, and a high porosity. Even the yield of encapsulation was influenced by the presence of hydrophilic co-solvents, causing a higher yield for nano-vectors. Polyesters-based nano-vectors showed release times of molecules, linked to their degradation time, higher than 8 months that make them useful to formulate injectable or implantable drug delivery systems. Polyacrylate-based micro-vectors showed an enteric behavior, interesting for designing solid pharmaceutical formulations for oral delivery. Therefore, the technique demonstrated to assure a broad application in drug delivery research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiong XY, Guo L, Gong YC et al (2012) In vitro & in vivo targeting behaviors of biotinylated pluronic F127/poly(lactic acid) nanoparticles through biotin–avidin interaction. Eur J Pharm Sci 46:537–544

    Article  Google Scholar 

  2. Lee Y-S, Johnson PJ, Robbins PT, Bridson RH (2013) Production of nanoparticles-in-microparticles by a double emulsion method: a comprehensive study. Eur J Pharm Biopharm 83:168–173

    Article  Google Scholar 

  3. Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB (2011) Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44:310–320

    Article  Google Scholar 

  4. Bernardi A, Zilberstein A, Jäger E et al (2009) Effects of indomethacin-loaded nanocapsules in experimental models of inflammation in rats. Br J Pharmacol 158:1104–1111

    Article  Google Scholar 

  5. Kim B-S, Kim C-S, Lee K-M (2008) The intracellular uptake ability of chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles. Arch Pharmacal Res 31:1050–1054

    Article  Google Scholar 

  6. Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  Google Scholar 

  7. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128–E147

    Article  Google Scholar 

  8. Spizzirri U, Iemma F, Altimari I, Curcio M, Puoci F, Picci N (2012) Grafted gelatin microspheres as potential pH-responsive devices. J Mater Sci 47:3648–3657. doi:10.1007/s10853-011-6211-3

    Article  Google Scholar 

  9. Béduneau A, Saulnier P, Benoit J-P (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967

    Article  Google Scholar 

  10. Müller R, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Article  Google Scholar 

  11. Carmen Varela M, Guzmán M, Molpeceres J, del Rosario Aberturas M, Rodriguez-Puyol D, Rodriguez-Puyol M (2001) Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur J Pharm Sci 12:471–478

    Article  Google Scholar 

  12. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  Google Scholar 

  13. Fattal E, Barratt G (2009) Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 157:179–194

    Article  Google Scholar 

  14. Barba AA, Dalmoro A, d’Amore M, Lamberti G (2013) In vitro dissolution of pH sensitive micro-particles for colon-specific drug delivery. Pharm Dev Technol 18:1399–1406

    Article  Google Scholar 

  15. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  Google Scholar 

  16. Medina C, Santos-Martinez M, Radomski A, Corrigan O, Radomski M (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    Article  Google Scholar 

  17. Keck CM, Müller RH (2013) Nanotoxicological classification system (NCS)—a guide for the risk–benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84(3):445–448

    Article  Google Scholar 

  18. Wang X, Wenk E, Hu X et al (2007) Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 28:4161–4169

    Article  Google Scholar 

  19. Yang KK, Kong M, Wei YN et al (2013) Folate-modified—chitosan-coated liposomes for tumor-targeted drug delivery. J Mater Sci 48:1717–1728. doi:10.1007/s10853-012-6930-0

    Article  Google Scholar 

  20. ElBayoumi TA, Torchilin VP (2010) Current trends in liposome research. Methods Mol Biol 605:1–27

    Google Scholar 

  21. Bayindir ZS, Yuksel N (2010) Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 99:2049–2060

    Google Scholar 

  22. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  Google Scholar 

  23. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    Article  Google Scholar 

  24. Dalmoro A, Lamberti G, Titomanlio G, Barba AA, d’Amore M (2010) Enteric micro-particles for targeted oral drug delivery. AAPS PharmSciTech 11:1500–1507

    Article  Google Scholar 

  25. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429

    Article  Google Scholar 

  26. Benita S (2006) Microencapsulation: methods and industrial applications. Taylor & Francis, New York

    Google Scholar 

  27. Freitas S, Merkle H, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 102:313–332

    Article  Google Scholar 

  28. Pérez E, Benito M, Teijón C, Olmo R, Teijón JM, Blanco MD (2012) Tamoxifen-loaded nanoparticles based on a novel mixture of biodegradable polyesters: characterization and in vitro evaluation as sustained release systems. J Microencapsul 29:309–322

    Article  Google Scholar 

  29. Kompella UB, Bandi N, Ayalasomayajula SP (2003) Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 44:1192–1201

    Article  Google Scholar 

  30. Krishnamachari Y, Madan P, Lin S (2007) Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int J Pharm 338:238–247

    Article  Google Scholar 

  31. Lopes R, Eleutério CV, Gonçalves LMD, Cruz MEM, Almeida AJ (2012) Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. Eur J Pharm Sci 45:442–450

    Article  Google Scholar 

  32. Song XR, Cai Z, Zheng Y et al (2009) Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 37:300–305

    Article  Google Scholar 

  33. Sánchez A, Tobio M, González L, Fabra A, Alonso MJ (2003) Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur J Pharm Sci 18:221–229

    Article  Google Scholar 

  34. Bao T, Hiep N, Kim Y, Yang H, Lee B (2011) Fabrication and characterization of porous poly(lactic-co-glycolic acid) (PLGA) microspheres for use as a drug delivery system. J Mater Sci 46:2510–2517. doi:10.1007/s10853-010-5101-4

    Article  Google Scholar 

  35. Abismail B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6:75–83

    Article  Google Scholar 

  36. Gabor F (1999) Ketoprofen-poly(d,l-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics. J Microencapsul 16:1–12

    Article  Google Scholar 

  37. Yang Y, Chung T, Ng NP (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22:231–241

    Article  Google Scholar 

  38. Sipos P et al (2005) Influence of preparation conditions on the properties of eudragit microspheres produced by a double emulsion method. Drug Dev Res 64:41–54

    Article  Google Scholar 

  39. Mainardes RM, Evangelista RC (2005) PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 290:137–144

    Article  Google Scholar 

  40. Behrend O, Ax K, Schubert H (2000) Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem 7:77–85

    Article  Google Scholar 

  41. Li MK, Fogler HS (1978) Acoustic emulsification. Part 1. Form the initial droplets. J Fluid Mech 88:499–511

    Article  Google Scholar 

  42. Li MK, Fogler HS (1978) Acoustic emulsification. Part 2. Form the initial droplets. J Fluid Mech 88:513–528

    Article  Google Scholar 

  43. Barba A, Dalmoro A, De Santis F, Lamberti G (2009) Synthesis and characterization of P(MMA–AA) copolymers for targeted oral drug delivery. Polym Bull 62:679–688

    Article  Google Scholar 

  44. Joshi DP, Lan-Chun-Fung YL, Pritchard JG (1979) Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Anal Chim Acta 104:153–160

    Article  Google Scholar 

  45. Barba AA, Chirico S, Dalmoro A, Lamberti G (2009) Simultaneous measurement of theophylline and cellulose acetate phthalate in phosphate buffer by UV analysis. Can J Anal Sci Spectros 53:249–253

    Google Scholar 

  46. Coulson J, Richardson J (1991) Chemical engineering. Volume 2: particle technology and separation processes. Pergamon Press, Oxford

    Google Scholar 

  47. Ye WP, Du FS, Jin WH, Yang JY, Xu Y (1997) In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology. React Funct Polym 32:161–168

    Article  Google Scholar 

  48. Grayson ACR, Cima MJ, Langer R (2005) Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 26:2137–2145

    Article  Google Scholar 

  49. Gonçalves CMB, Tomé LC, Coutinho JAP, Marrucho IM (2011) Addition of α-tocopherol on poly(lactic acid): thermal, mechanical, and sorption properties. J Appl Polym Sci 119:2468–2475

    Article  Google Scholar 

  50. Huang MH, Li S, Hutmacher DW, Coudane J, Vert M (2006) Degradation characteristics of poly(ϵ-caprolactone)-based copolymers and blends. J Appl Polym Sci 102:1681–1687

    Article  Google Scholar 

  51. Ertl P (2008) Molecular drug properties. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  52. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministero dell’Istruzione dell’ Università e della Ricerca (Contract Grant Number: PRIN 2010/2011-20109PLMH2). Annalisa Dalmoro’s Research Grant was supported by “Strategie Terapeutiche Innovative”—STRAIN, POR Campania FSE 2007/2013. Authors are grateful to Dr. Maria Cristina Del Barone, Laboratorio LaMest—CNR, for SEM the photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Dalmoro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba, A.A., Dalmoro, A., d’Amore, M. et al. Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique. J Mater Sci 49, 5160–5170 (2014). https://doi.org/10.1007/s10853-014-8224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8224-1

Keywords

Navigation