Skip to main content
Log in

Synthesis of soluble and thermally stable polyimides with phthalimide as pendent group from pyridine-containing triamine

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the design and synthesis of a novel pyridine-containing triamine monomer, 2,6-bis(4-aminophenyl)-4-(4-aminophenoxy)pyridine (BAAP), through combining the nucleophilic aromatic substitution with modified Chichibabin reaction and hydrazine hydrate reduction. Based on it, a novel three-step route was applied in order to obtain a series of new polyimides, containing phthalimide as pendent group and pyridine moieties in main chains. The three-step route consisted of terminating the triamine by incorporating phthalic amic acid as pendant, ring-opening polymerization to form poly(amic acid)s and further chemical imidization to acquire polyimides. Nuclear Magnetic Resonance Spectroscopy (1H-NMR) was used for chemical structural characterization, and the results indicated the various forms of BAAP and branched structure units in the obtained polyimides. The morphology structures of the polyimides were evaluated by X-ray diffraction patterns, and the d-spacing values were found in the range of 4.14–4.65 Ǻ. Most of the resulting polyimides were soluble in polar aprotic solvents, such as NMP, DMF, DMAc, DMSO, and so on. Meanwhile, the polyimides exhibited excellent thermal stability, with the decomposition temperature at 5 and 10 % weight loss temperatures in the ranges of 399.1–461.1 °C and 481.1–566.9 °C, respectively. The polyimides, based on 6FDA, possessed the best comprehensive thermally stable and soluble performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Perform Polym 15:3–45. doi:10.1177/095400830301500101

    Google Scholar 

  2. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974. doi:10.1016/j.progpolymsci.2012.02.005

    Article  Google Scholar 

  3. Peter J, Khalyavina A, Kříž J, Bleha M (2009) Synthesis and gas transport properties of ODPA-TAP-ODA hyperbranched polyimides with various comonomer ratios. Eur Polym J 45:1716–1727. doi:10.1016/j.eurpolymj.2009.03.003

    Article  Google Scholar 

  4. Chen W, Yan W, Wu S, Xu Z, Yeung K, Yi C (2010) Preparation and properties of novel triphenylpyridine-containing hyperbranched polyimides derived from 2,4,6-tris(4-aminophenyl) pyridine under microwave irradiation. Macromol Chem Phys 211:1803–1813. doi:10.1002/macp.201000193

    Article  Google Scholar 

  5. Chen YC, Lo WC, Juang TY, Dai SA, Su WC, Chou CC, Jeng RJ (2011) Thermally stable hyperbranched nonlinear optical polyimides using an “A2 + B3″ approach. Mater Chem Phys 127:107–113. doi:10.1016/j.matchemphys.2011.01.042

    Article  Google Scholar 

  6. Liu H, Li Y, Wang T, Wang Q (2012) In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J Mater Sci 47:1867–1874. doi:10.1007/s10853-011-5975-9

    Article  Google Scholar 

  7. Naito K (2013) The effect of high-temperature vapor deposition polymerization of polyimide coating on tensile properties of polyacrylonitrile-and pitch-based carbon fibers. J Mater Sci 48:6056–6064. doi:10.1007/s10853-013-7402-x

    Article  Google Scholar 

  8. Seyedjamali H, Pirisedigh A (2011) Synthesis and morphology of new functional polyimide/titania nano hybrid materials. J Mater Sci 46:6744–6750. doi:10.1007/s10853-011-5630-5

    Article  Google Scholar 

  9. Kim SD, Kim SY, Chung IS (2013) Soluble and transparent polyimides from unsymmetrical diamine containing two trifluoromethyl groups. J Polym Sci Pol Chem 51:4413–4422. doi:10.1002/pola.26855

    Article  Google Scholar 

  10. Hu Z, Yin Y, Kita H, Okamoto KI, Suto Y, Wang H, Kawasato H (2007) Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application. Polymer 48:1962–1971. doi:10.1016/j.polymer.2007.02.011

    Article  Google Scholar 

  11. Hasegawa M, Hirano D, Fujii M, Haga M, Takezawa E, Yamaguchi S, Ishikawa A, Kagayama T (2013) Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. J Polym Sci Pol Chem 51:575–592. doi:10.1002/pola.26407

    Article  Google Scholar 

  12. Wang DH, Riley JK, Fillery SP, Durstock MF, Vaia RA, Tan LS (2013) Synthesis and characterization of unsymmetrical benzonitrile-containing polyimides: viscosity-lowering effect and dielectric properties. J Polym Sci Pol Chem 51:4998–5011. doi:10.1002/pola.26927

    Article  Google Scholar 

  13. Shao Y, Li Y, Zhao X, Ma T, Gong C, Yang F (2007) Synthesis and characterization of soluble polyimides derived from a novel unsymmetrical diamine monomer: 1, 4-(2′, 4″-diaminodiphenoxy) benzene. Eur Polym J 43:4389–4397. doi:10.1016/j.eurpolymj.2007.07.002

    Article  Google Scholar 

  14. Shen J, Zhang Y, Chen W, Wang W, Xu Z, Yeung KW, Yi C (2013) Synthesis and properties of hyperbranched polyimides derived from novel triamine with prolonged chain segments. J Polym Sci Pol Chem 51:2425–2437. doi:10.1002/pola.26628

    Article  Google Scholar 

  15. Li W, Guo X, Fang J (2014) Synthesis and properties of sulfonated polyimide-polybenzimidazole copolymers as proton exchange membranes. J Mater Sci 49:2745–2753. doi:10.1007/s10853-013-7977-2

    Article  Google Scholar 

  16. Zhang Y, Yu L, Su Q, Zheng H, Huang H, Chan H (2012) Fluorinated polyimide-silica films with low permittivity and low dielectric loss. J Mater Sci 47:1958–1963. doi:10.1007/s10853-011-5990-x

    Article  Google Scholar 

  17. Wang C, Zhao X, Li G (2012) New soluble polyimides with high optical transparency and light color containing pendant trifluoromethyl and methyl groups. Chinese J Chem 30:1555–1560. doi:10.1002/cjoc.201100754

    Article  Google Scholar 

  18. Ghosh A, Sen SK, Banerjee S, Voit B (2012) Solubility improvements in aromatic polyimides by macromolecular engineering. RSC Adv 2:5900–5926. doi:10.1039/C2RA20175E

    Article  Google Scholar 

  19. Zeng K, Guo Q, Gao S, Wu D, Fan H, Yang G (2012) Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: structure/solubility and thermal property relationships. Macromol Res 20:10–20. doi:10.1007/s13233-012-0007-4

    Article  Google Scholar 

  20. Huang X, Huang W, Liu J, Meng L, Yan D (2012) Synthesis of highly soluble and transparent polyimides. Polym Int 61:1503–1509. doi:10.1002/pi.4235

    Article  Google Scholar 

  21. Wang J, Liu C, Su G, Jian X (2012) Synthesis and characterization of organo-soluble polyimides containing phthalazinone and bicarbazole moieties in the main chain. High Perform Polym 24:356–365. doi:10.1177/0954008312437587

    Article  Google Scholar 

  22. Baek JB, Qin H, Mather PT, Tan LS (2002) A new hyperbranched poly (arylene-ether-ketone-imide): synthesis, chain-end functionalization, and blending with a bis (maleimide). Macromolecules 35:4951–4959. doi:10.1021/ma020066+

    Article  Google Scholar 

  23. Köytepe S, Paşahan A, Ekinci E, Seçkin T (2005) Synthesis, characterization and H2O2-sensing properties of pyrimidine-based hyperbranched polyimides. Eur Polym J 41:121–127. doi:10.1016/j.eurpolymj.2004.08.007

    Article  Google Scholar 

  24. You NH, Nakamura Y, Suzuki Y, Higashihara T, Ando S, Ueda M (2009) Synthesis of highly refractive polyimides derived from 3, 6-bis (4-aminophenylenesulfanyl) pyridazine and 4, 6-bis (4-aminophenylenesulfanyl) pyrimidine. J Polym Sci Pol Chem 47:4886–4894. doi:10.1002/pola.23538

    Article  Google Scholar 

  25. Xia A, Lü G, Qiu X, Guo H, Zhao J, Ding M, Gao L (2006) Syntheses and properties of novel polyimides derived from 2-(4-Aminophenyl)-5-aminopyrimidine. J Appl Polym Sci 102:5871–5876. doi:10.1002/app.24988

    Article  Google Scholar 

  26. Zhang S, Li Y, Yin D, Wang X, Zhao X, Shao Y, Yang S (2005) Study on synthesis and characterization of novel polyimides derived from 2, 6-bis (3-aminobenzoyl) pyridine. Eur Polym J 41:1097–1107. doi:10.1016/j.eurpolymj.2004.11.014

    Article  Google Scholar 

  27. Zhang S, Li Y, Wang X, Yin D, Shao Y, Zhao X (2005) Synthesis and characterization of novel polyimides based on pyridine-containing diamine. Chinese Chem Lett 16:1165–1168. doi:10.1039/C3AY90095A

    Google Scholar 

  28. Wang X, Li YF, Ma T, Zhang S, Gong C (2006) Synthesis and characterization of novel polyimides derived from 2, 6-bis [4-(3, 4-dicarboxyphenoxy) benzoyl] pyridine dianhydride and aromatic diamines. Polymer 47:3774–3783. doi:10.1016/j.polymer.2006.03.101

    Article  Google Scholar 

  29. Wang X, Li Y, Zhang S, Ma T, Shao Y, Zhao X (2006) Synthesis and characterization of novel polyimides derived from pyridine-bridged aromatic dianhydride and various diamines. Eur Polym J 42:1229–1239. doi:10.1016/j.eurpolymj.2005.12.012

    Article  Google Scholar 

  30. Burnett JF, Zahler RE (1951) Aromatic nucleophilic substitution reactions. Chem Rev 49:273–412. doi:10.1021/cr60153a002

    Article  Google Scholar 

  31. Tamami B, Yeganeh H (2001) Preparation and properties of novel polyimides derived from 4-aryl-2,6 bis (4-amino phenyl) pyridine. J Polym Sci Pol Chem 39:3826–3831. doi:10.1002/pola.10025

    Article  Google Scholar 

  32. Calle M, Lee YM (2011) Thermally rearranged (TR) poly (ether-benzoxazole) membranes for gas separation. Macromolecules 44:1156–1165. doi:10.1021/ma102878z

    Article  Google Scholar 

  33. Ma X, Swaidan R, Teng B, Tan H, Salinas O, Litwiller E, Han Y, Pinnau I (2013) Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon 62:88–96. doi:10.1016/j.carbon.2013.05.057

    Article  Google Scholar 

  34. Steel KM, Koros WJ (2003) Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41:253–266. doi:10.1016/S0008-6223(02)00309-3

    Article  Google Scholar 

  35. Roe RJ, Roe R (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longhai Zhuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, L., Kou, K., Wang, Y. et al. Synthesis of soluble and thermally stable polyimides with phthalimide as pendent group from pyridine-containing triamine. J Mater Sci 49, 5141–5150 (2014). https://doi.org/10.1007/s10853-014-8222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8222-3

Keywords

Navigation