Skip to main content
Log in

Kinetic description for solid-state transformation using an approach of summation/product transition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In a recent work by the present authors, an analytical kinetic model has been derived for solid-state phase transformations on the basis of summation/product transition. In the present paper, this approach is extended to models that describe transformations involving various time synchronous and time asynchronous sub-processes. According to the newly proposed models, several interesting kinetic phenomena are revealed: negative sub-processes are responsible for the decreasing tendency of Avrami exponent; the evolution of overall kinetic parameters during time synchronous transformation reflects the relative contributions from different sub-processes; the mechanism of transformation subject to Avrami nucleation can be regarded as a combination of various time synchronous sub-processes; a process due to continuous nucleation is equal to the total effect of infinitely many sub-processes due to site saturation starting at different times; and abnormal results of Avrami plot in time asynchronous transformation are due to a sudden change in transformation mechanisms. Finally, the time asynchronous model is applied successfully to describe the crystallizations of Mg–Cu–Y and Zr–Cu–Al amorphous alloys, measured by differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. To obtain Eq. (3), the original treatment is shown in Ref. [7]. Such treatment is easily verified by a simple mathematical identity (i.e., \( X = X_{1}^{a} X_{2}^{b} \) with X = X 1 = X 2 and a + b=1):

    \( x_{\text{e}} = x_{\text{e1}} \pm x_{{{\text{e}}2}} = x_{{{\text{e}}1}} \left( {1 \pm r_{1,2} } \right) = x_{\text{e2}} \left( {r_{1,2}^{ - 1} \pm 1} \right) = \left[ {x_{{{\text{e}}1}} \left( {1 \pm r_{1,2} } \right)} \right]^{{\frac{1}{{1 \pm r_{1,2} }}}} \left[ {x_{{{\text{e}}2}} \left( {r_{1,2}^{ - 1} \pm 1} \right)} \right]^{{\frac{1}{{r_{1,2}^{ - 1} \pm 1}}}} \)

    For the symbol “±”, see “Extended method” section. Compared with this mathematical identity, the significance of the original treatment (or the present treatment in “Extended method” section) is to determine the power law indexes according to the relative contributions of the two involved sub-processes. These two procedures are just mathematical tools, which are used to express the kinetics in the KJMA form but with time/temperature-dependent kinetic parameters.

  2. The ended sub-process means that a sub-process stops at time t = t′ due to the change of transformation conditions such as pressure [43], external fields [44], etc.

References

  1. Christian JW (1975) The theory of transformation in metals and alloys, part1: equilibrium and general kinetics theory, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  2. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng 135:416–458.

    Google Scholar 

  3. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112

    Article  Google Scholar 

  4. Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  5. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184

    Article  Google Scholar 

  6. Kolmogorov AN (1937) On statistical theory of metal crystallization. Izv Akad Nauk SSSR Ser Mat 3:355–359

    Google Scholar 

  7. Liu F, Sommer F, Mittemeijer EJ (2004) An analytical model for isothermal and isochronal transformation kinetics. J Mater Sci 39:1621–1634. doi:10.1007/s10853-008-2709-8

    Google Scholar 

  8. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52:193–212

    Article  Google Scholar 

  9. Fanfoni M, Tomellini M, Volpe M (2002) Treatment of phantom overgrowth in the Kolmogorov–Johnson–Mehl–Avrami kinetics as a correlation problem. Phys Rev B 65:172301

    Article  Google Scholar 

  10. Tomellini M, Fanfoni M (2008) Impingement factor in the case of phase transformations governed by spatially correlated nucleation. Phys Rev B 78:014206

    Article  Google Scholar 

  11. Birnie DP III, Weinberg MC (1995) Kinetics of transformation for anisotropic particles including shielding effects. J Chem Phys 103:3742–3746

    Article  Google Scholar 

  12. Burbelko AA, Fras E, Kapturkiewicz W (2005) About Kolmogorov’s statistical theory of phase transformation. Mater Sci Eng A 413–414:429–434

    Article  Google Scholar 

  13. Bruna P, Crespo D, González-Cinca R, Pineda E (2006) On the validity of Avrami formalism in primary crystallization. J Appl Phys 100:054907

    Article  Google Scholar 

  14. Tomellini M (2011) Impact of soft impingement on the kinetics of diffusion-controlled growth of immiscible alloys. Comput Mater Sci 50:2371–2379

    Article  Google Scholar 

  15. Mittemeijer EJ (1992) Analysis of the kinetics of phase transformations. J Mater Sci 27:3977–3987. doi:10.1179/174328007X160308

    Article  Google Scholar 

  16. Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques. Acta Mater 44:4807–4813

    Article  Google Scholar 

  17. Lyon RE (1997) An integral method of nonisothermal kinetic analysis. Thermochim Acta 297:117–124

    Article  Google Scholar 

  18. Ruitenberg G, Woldt E, Petford-Long AK (2001) Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta 378:97–105

    Article  Google Scholar 

  19. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci 37:1321–1332. doi:10.1023/A:1014556109351

    Article  Google Scholar 

  20. Farjas J, Roura P (2006) Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater 54:5573–5579

    Article  Google Scholar 

  21. Ghosh G, Chandrasekaran M, Delaey L (1991) Isothermal crystallization kinetics of Ni24Zr76 and Ni24(Zr-X)76 amorphous alloys. Acta Mater 39:925–936

    Article  Google Scholar 

  22. Nitsche H, Sommer F, Mittemeijer EJ (2005) The Al nano-crystallization process in amorphous Al85Ni8Y5Co2. J Non-Cryst Solids 351:3760–3771

    Article  Google Scholar 

  23. Calka A, Radliński AP (1987) DSC study of surface induced crystallization in Pd-Si metallic glasses. Acta Mater 35:1823–1829

    Article  Google Scholar 

  24. Liu F, Sommer F, Mittemeijer EJ (2004) Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Mater 52:3207–3216

    Article  Google Scholar 

  25. Liu F, Yang CL, Yang GC, Zhou YH (2007) Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model. Acta Mater 55:5255–5267

    Article  Google Scholar 

  26. Liu F, Song SJ, Sommer F, Mittemeijer EJ (2009) Evaluation of the maximum transformation rate for analyzing solid-state phase transformation kinetics. Acta Mater 57:6176–6190

    Article  Google Scholar 

  27. Liu F, Nitsche H, Sommer F, Mittemeijer EJ (2010) Nucleation, growth and impingement modes deduced from isothermally and isochronally conducted phase transformations: calorimetric analysis of the crystallization of amorphous Zr50Al10Ni40. Acta Mater 58:6542–6553

    Article  Google Scholar 

  28. Jiang YH, Liu F, Song SJ (2012) An extended analytical model for solid-state phase transformation upon continuous heating and cooling processes: application in gamma/alpha transformation. Acta Mater 60:3815–3829

    Article  Google Scholar 

  29. Androsch R, Wunderlich B, Lupke T, WUTZLER A (2002) Influence of deformation on irreversible and reversible crystallization of poly (ethylene-co-1-octene). J Polym Sci B 40:1223–1235

    Article  Google Scholar 

  30. Inoue A, Wang XM (2000) Bulk amorphous FC20 (Fe–C–Si) alloys with small amounts of B and their crystallized structure and mechanical properties. Acta Mater 48:1383–1395

    Article  Google Scholar 

  31. Borrego A, Gonzalez-Docel G (1998) Calorimetric study of 6061-Al-15 vol% SiCWPM composites extruded at different temperatures. Mater Sci Eng, A 245:10–18

    Article  Google Scholar 

  32. Borrego A, Gonzalez-Docel G (2000) Reply to comments on: ‘Calorimetric study of 6061-Al-15 vol% SiCwPM composites extruded at different temperatures’ by A. Borrego, G. Gonzalez-Doncel, Mater Sci Eng A 245 (1995) 10. Mater Sci Eng A 276:292–295

    Article  Google Scholar 

  33. Varschavsky A, Donoso E (2003) Energetic and kinetic evaluations in a quasi-binary Cu-1 at% Co2Si alloy. Mater Lett 57:1266–1271

    Article  Google Scholar 

  34. Song KK, Gargarella P, Pauly S, Ma GZ, Kühn U (2012) Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu–Zr–Ag metallic glasses. J Appl Phys 112:063503

    Article  Google Scholar 

  35. Chen N, Louzguine-Luzgin DV, Xie GQ, Wada T, Inoue A (2009) Influence of minor Si addition on the glass-forming ability and mechanical properties of Pd40Ni40P20 alloy. Acta Mater 57:2775–2780

    Article  Google Scholar 

  36. Louzguine-Luzgin DV, Xie GQ, Li S, Zhang QS, Zhang W, Suryanarayana C, Inoue A (2009) Glass-forming ability and differences in the crystallization behavior of ribbons and rods of Cu36Zr48Al8Ag8 bulk glass-forming alloy. J Mater Res 24:1886–1895

    Article  Google Scholar 

  37. Gu B, Liu F, Chen YZ, Jiang YH, Ma YZ (2014) Structural modification and phase transformation kinetics: crystallization of amorphous Fe40Ni40P14B6 eutectic alloy. J Mater Sci 49:842–857. doi:10.1007/s10853-013-7768-9

    Article  Google Scholar 

  38. Pusztai T, Gránásy L (1998) Monte Carlo simulation of first-order phase transformations with mutual blocking of anisotropically growing particles up to all relevant orders. Phys Rev B 57:14110

    Article  Google Scholar 

  39. Kooi BJ (2004) Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: extension of the Johnson–Mehl–Avrami–Kolmogorov theory. Phys Rev B 70:224108

    Article  Google Scholar 

  40. Sun NX, Zhang K, Zhang XH, Liu XD, Lu K (1996) Nanocrystallization of amorphous Fe33Zr67 alloy. Nano Mater 7:637–649

    Article  Google Scholar 

  41. Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1:153–161

    Article  Google Scholar 

  42. Skrdla PJ, Robertson RT (2005) Semiempirical equations for modeling solid-state kinetics based on a maxwell-boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals. J Phys Chem B 109:10611–10619

    Article  Google Scholar 

  43. Ye F, Lu K (1998) Pressure effect on polymorphous crystallization kinetics in amorphous selenium. Acta Mater 46:5965–5971

    Article  Google Scholar 

  44. Wang X, Qi M, Yi S (2004) Crystallization behavior of bulk amorphous alloy Zr62Al8Ni13Cu17 under high magnetic field. Scr Mater 51:1047–1050

    Article  Google Scholar 

  45. Rios PR, Villa E (2011) Simultaneous and sequential transformations. Acta Mater 59:1632–1643

    Article  Google Scholar 

  46. Men H, Kim WT, Kim DH (2004) Glass formation and crystallization behavior in Mg65Cu25Y10–xGdx (x = 0, 5 and 10) alloys. J Non-Cryst Solids 337:29–35

    Article  Google Scholar 

  47. Gun B, Laws KJ, Ferry M (2006) Static and dynamic crystallization in Mg–Cu–Y bulk metallic glass. J Non-Cryst Solids 352:3887–3895

    Article  Google Scholar 

  48. Bos C, Sommer F, Mittemeijer EJ (2005) An atomistic analysis of the interface mobility in a massive transformation. Acta Mater 53:5333–5341

    Article  Google Scholar 

  49. Graydon JW, Thorpe SJ, Kirk DW (1994) Determination of the Avrami exponent for solid state transformations from non-isothermal differential scanning calorimetry. J Non-Cryst Solids 175:31–43

    Article  Google Scholar 

  50. Kempen ATW, Sommer F, Mittemeijer EJ (2002) The isothermal and isochronal kinetics of the crystallisation of bulk amorphous Pd40Cu30P20Ni10. Acta Mater 50:1319–1329

    Article  Google Scholar 

  51. Fernández R, Carrasco W, Zúñiga A (2010) Structure and crystallization of amorphous Cu–Zr–Al powders. J Non-Cryst Solids 356:1665–1669

    Article  Google Scholar 

  52. Wang D, Tan H, Li Y (2005) Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system–a metallographic way to pinpoint the best glass forming alloys. Acta Mater 53:2969–2979

    Article  Google Scholar 

  53. Lee KS, Jo YM, Lee YS (2013) Crystallization and high-temperature deformation behavior of Cu49Zr45Al6 bulk metallic glass within supercooled liquid region. J Non-Cryst Solids 376:145–151

    Article  Google Scholar 

  54. Lad KN, Savalia RT, Pratap A, Dey GK, Banerjee S (2008) Isokinetic and isoconversional study of crystallization kinetics of a Zr-based metallic glass. Thermochim Acta 473:74–80

    Article  Google Scholar 

  55. Hu CX, Li GL, Shi Y (2011) Crystallization kinetics of the Cu47.5Zr47.5Al5 bulk metallic glass under continuous and iso-thermal heating. Appl Mech Mater 99–100:1052–1058

    Article  Google Scholar 

  56. Qiao JC, Pelletier JM (2010) Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). J Non-Cryst Solids 357:2590–2594

    Article  Google Scholar 

  57. Tomellini M (2013) Functional form of the Kolmogorov–Johnson–Mehl–Avrami kinetics for non-isothermal phase transformations at constant heating rate. Thermochim Acta 566:249–256

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the National Basic Research Program of China (973 Program, No. 2011CB610403), the Natural Science Foundation of China (Nos. 51071127 and 51134011), the Fundamental Research Fund of Northwestern Polytechnical University (No. JC20120223), the Doctorate Foundation of Northwestern Polytechnical University (No. CX201008 and CX201311), and the China National Funds for Distinguished Young Scientists (No. 51125002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Appendices

Appendix 1: Iso-kinetic relationship

Upon recent study [25], applying the SPT for transformation assuming mixed nucleation of site saturation and continuous nucleation, the overall mechanism is consistent with iso-kinetic relationship, and additivity rule can be used to extract isochronal data from isothermal experiments, and vice versa [25]. For the time synchronous model, it should be noted that constant kinetic parameters n z , Q z , and K 0z hold for each sub-process (see “General model for time synchronous transformation” section), but lead to versatile variation subjected to the SPT. Whether the overall mechanism is still consistent with the iso-kinetics should be examined.

Following a general definition of iso-kinetic reaction by Christian [1], a transformation process is called iso-kinetic, if the instantaneous reaction rate may be written in the form of a separable differential equation:

$$ \frac{{{\text{d}}f}}{{{\text{d}}t}}{ = }h\left( T \right)g\left( f \right), $$
(50)

where h(T) and g(f) are functions only of T and f, respectively. On this basis, it will be herein proved that for a transformation involving i sub-processes, the overall mechanism would be still consistent with iso-kinetic relationship, using mathematical induction.

For isothermal transformation involving two sub-processes, substitution of Eq. (15) with i = 2 into Eq. (4), leads to

$$ \frac{{{\text{d}}f}}{{{\text{d}}t}} = n_{1}^{ * } K_{01}^{*} \exp \left( { - {{Q_{1}^{*} } \mathord{\left/ {\vphantom {{Q_{1}^{*} } {RT}}} \right. \kern-0pt} {RT}}} \right)\left( {1 - f} \right)\left( { - \ln \left( {1 - f} \right)} \right)^{{1 - \frac{1}{{n_{1}^{ *} }}}}. $$
(51)

This case has been proved to be consistent with iso-kinetic relationship [25].

When i = k (≥2), the transformed fraction can be expressed as

$$ f{ = }1 - \exp \left( { - \left[ {K_{{0\left( {k - 1} \right)}}^{*} \exp \left( { - \frac{{Q_{k - 1}^{ *} }}{RT}} \right)t} \right]^{{n_{k - 1}^{ *} }} } \right) $$
(52)

with the kinetic parameters as described by Eq. (23). Supposing for this case \( {{{\text{d}}f} \mathord{\left/ {\vphantom {{{\text{d}}f} {{\text{d}}t}}} \right. \kern-0pt} {{\text{d}}t}} = n_{k - 1}^{ * } K_{{0\left( {k - 1} \right)}}^{ *} \exp \left( { - {{Q_{k - 1}^{*} } \mathord{\left/ {\vphantom {{Q_{k - 1}^{*} } {RT}}} \right. \kern-0pt} {RT}}} \right)\left( {1 - f} \right)\left( { - \ln \left( {1 - f} \right)} \right)^{{1 - \frac{1}{{n_{k - 1}^{ *} }}}} \) does hold. This subsequently leads to

$$ \frac{{d{ \ln }\left( { - \ln \left( {1 - f} \right)} \right)}}{{d{ \ln }t}}{ = }n_{k - 1}^{ *} $$
(53)

and then

$$ \frac{{{\text{dln}}\left( {K_{{0\left( {k - 1} \right)}}^{*} } \right)^{{n_{k - 1}^{*} }} }}{{{\text{dln}}t}} - \frac{1}{RT}\frac{{{\text{d}}\left( {n_{k - 1}^{ *} Q_{k - 1}^{ *} } \right)}}{{{\text{dln}}t}}{\text{ + ln}}t\frac{{{\text{d}}n_{k - 1}^{ *} }}{{{\text{dln}}t}}{ = }0. $$
(54)

Please note that Eq. (54) is an essential condition for a successful application of mathematical induction.

When i = k+1, substitution of Eq. (22) into Eq. (4) leads to

$$ \begin{gathered} \ln \left( { - \ln \left( {1 - f} \right)} \right) = \ln \left[ {\left( {\left( {K_{{0\left( {k - 1} \right)}}^{*} } \right)^{{n_{k - 1}^{*} }} \left( {1 \pm {{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}} \right)} \right)^{{\frac{1}{{1 \pm {{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}}}}} \left( {K_{{0\left( {k + 1} \right)}}^{{n_{k + 1} }} \left( {\left( {{{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}} \right)^{ - 1} \pm 1} \right)} \right)^{{\frac{1}{{1 \pm \left( {{{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}} \right)^{ - 1} }}}} } \right] \\ - \frac{{\frac{{n_{k - 1}^{*} Q_{k - 1}^{*} }}{{1 \pm {{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}}} + \frac{{n_{k + 1} Q_{k + 1} }}{{1 \pm \left( {{{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}} \right)^{ - 1} }}}}{RT} + \left[ {\frac{{n_{k - 1}^{*} }}{{1 \pm \left( {{{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}} \right)}} + \frac{{n_{k + 1} }}{{1 \pm \left( {{{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}} \right)^{ - 1} }}} \right]\ln t \hfill \\ \end{gathered}. $$
(55)

Taking the derivation of Eq. (55) with respective to ln t strictly and simplifying, it thus leads to

$$ \frac{{{\text{dln}}\left( { - \ln \left( {1 - f} \right)} \right)}}{{{\text{dln}}t}} = n_{k}^{ *} { + }\frac{1}{{1 \pm {{r_{2k} } \mathord{\left/ {\vphantom {{r_{2k} } {r_{2k - 1} }}} \right. \kern-0pt} {r_{2k - 1} }}}}\left[ {\frac{{{\text{dln}}\left( {K_{{0\left( {k - 1} \right)}}^{*} } \right)^{n*} }}{{{\text{dln}}t}} - \frac{1}{RT}\frac{{{\text{d}}\left( {n_{k - 1}^{ *} Q_{k - 1}^{ *} } \right)}}{{{\text{dln}}t}}{ + }\ln t\frac{{{\text{d}}n_{k - 1}^{ *} }}{{{\text{dln}}t}}} \right] $$
(56)

which, in combination with Eq. (54), can be given further as

$$ \frac{{{\text{dln}}\left( { - \ln \left( {1 - f} \right)} \right)}}{{{\text{dln}}t}} = n_{k}^{ *} $$
(57)

and thus

$$ \frac{{{\text{d}}f}}{{{\text{d}}t}} = n_{k}^{ * } K_{0k}^{*} \exp \left( { - {{Q_{k}^{ *} } \mathord{\left/ {\vphantom {{Q_{k}^{ *} } {RT}}} \right. \kern-0pt} {RT}}} \right)\left( {1 - f} \right)\left( { - \ln \left( {1 - f} \right)} \right)^{{1{ - }\frac{1}{{n_{k}^{ *} }}}} = h\left( T \right)g\left( f \right). $$
(58)

Until now, it can be concluded that for a transformation involving i different sub-processes, the resulted mechanism is still consistent with iso-kinetic relationship. Using mathematical induction, analogous treatment which is also based on Eq. (51) can be performed for non-isothermal transformations. It should be noted that for transformations due to a single sub-process, Eq. (51) holds exactly for the isothermal case, while it is proved to be an excellent approximation for the non-isothermal case at a constant heating rate [57].

Appendix 2: Non-isothermal time asynchronous transformation

Corresponding to Eq. (27), the evolution of sub-process extended transformed fraction (with kinetic parameters as n z , Q z , and K 0z ), x ez , with temperature during a non-isothermal transformation can also be given in a piecewise function

$$ x_{{{\text{e}}z}} = \left[ {\int\limits_{{T_{z}^{*} }}^{T} {K_{0z} \exp \left( { - \frac{{Q_{z} }}{RT\left( t \right)}} \right)} \frac{{{\text{d}}T\left( t \right)}}{\varPhi }} \right]^{{n_{z} }} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{rect}}\left( {\frac{{T - {{\left( {T_{z}^{*} + T^{\prime}_{z} } \right)} \mathord{\left/ {\vphantom {{\left( {T_{z}^{*} + T^{\prime}_{z} } \right)} 2}} \right. \kern-0pt} 2}}}{{T^{\prime}_{z} - T_{z}^{*} }}} \right) + C_{z} H\left( {T - T^{\prime}_{z} } \right) $$
(59)

with \( C_{z} = \left[ {\int\limits_{{T_{z}^{*} }}^{{T^{\prime}}} {K_{0z} \exp \left( { - \frac{{Q_{z} }}{RT\left( t \right)}} \right)\frac{dT\left( t \right)}{\varPhi }} } \right]^{{n_{z} }} \), rect(± 1/2) = 0 and H(0) = 1. In this equation, it encounters the so-called “temperature integral,” which cannot be solved analytically and has to be approximated, i.e., for \( T_{z}^{ * } \) < T < T z ′ (rect = 1 and H = 0), Eq. (59) can be rewritten as

$$ \begin{gathered} x_{\text{ez}} = \left[ {\int_{{T_{z}^{*} }}^{T} {K_{0z} \exp \left( { - \frac{{Q_{z} }}{{RT^{\prime}}}} \right)\frac{{dT^{\prime}}}{\varPhi }} } \right]^{{n_{z} }} \hfill \\ = \left[ {\int_{0}^{T} {K_{0z} \exp \left( { - \frac{{Q_{z} }}{{RT^{\prime}}}} \right)\frac{{dT^{\prime}}}{\varPhi }} - \int_{0}^{{T_{z}^{*} }} {K_{0z} \exp \left( { - \frac{{Q_{z} }}{{RT^{\prime}}}} \right)\frac{{dT^{\prime}}}{\varPhi }} } \right]^{{n_{z} }} \hfill \\ \approx \left[ {\frac{{K_{0z} }}{{Q_{z} }}\exp \left( { - \frac{{Q_{z} }}{RT}} \right)\frac{{RT^{2} }}{\varPhi } - \frac{{K_{0z} }}{{Q_{z} }}\exp \left( { - \frac{{Q_{z} }}{{RT_{z}^{*} }}} \right)\frac{{R\left( {T_{z}^{*} } \right)^{2} }}{\varPhi }} \right]^{{n_{z} }}. \hfill \\ \end{gathered} $$
(60)

If \( T_{z}^{*} \ll T \) holds, the second term in the square bracket is so small that can be neglected, compared with the first term [7]. But in present treatment, such assumption ceases to be valid. Therefore, assuming that the two terms in the square bracket represent two reverse parts, application of the SPT indicated in “Extended method” section to Eq. (60) leads to

$$ x_{{{\text{e}}z}} = \left[ {K^{\prime}_{0z} \exp \left( { - \frac{{Q_{z} }}{RT}} \right)\frac{{RT^{2} }}{\varPhi }} \right]^{{n^{\prime}_{z} }} $$
(61)

with

$$ n^{\prime}_{z} = \frac{{n_{z} }}{{1 - r^{\prime}_{z} }}. $$
(62a)
$$ K^{\prime}_{0z} = \left( {\frac{{K_{0z} }}{{Q_{z} }}} \right)^{{1 - r^{\prime}_{z} }} \left( {1 - r^{\prime}_{z} } \right)\; \times \;\left[ {\exp \left( { - \frac{{Q_{z} }}{{RT_{z}^{*} }}} \right)\frac{{R\left( {T_{z}^{*} } \right)^{2} }}{\varPhi }\left( {\left( {r^{\prime}_{z} } \right)^{ - 1} - 1} \right)} \right]^{{\left( { - r^{\prime}_{z} } \right)}}. $$
(62b)
$$ r^{\prime}_{z} = {{\left[ {\exp \left( { - \frac{{Q_{z} }}{{RT_{z}^{*} }}} \right)\left( {T_{z}^{*} } \right)^{2} } \right]} \mathord{\left/ {\vphantom {{\left[ {\exp \left( { - \frac{{Q_{z} }}{{RT_{z}^{*} }}} \right)\left( {T_{z}^{*} } \right)^{2} } \right]} {\left[ {\exp \left( { - \frac{{Q_{z} }}{RT}} \right)T^{2} } \right]}}} \right. \kern-0pt} {\left[ {\exp \left( { - \frac{{Q_{z} }}{RT}} \right)T^{2} } \right]}}. $$
(62c)

Note that due to the effect of \( T_{z}^{ * } \), the modified sub-process kinetic parameters are marked with the symbol “′”.

Corresponding to Eq. (28), for a common temperature range between T l and T l+1, in which the transformation mechanism remains unchanged, the total x e can be expressed as

$$ \begin{gathered} x_{\text{e}} = \sum\limits_{z = 1}^{i} { \pm \left[ {K^{\prime}_{0z} \exp \left( { - \frac{{Q_{z} }}{RT}} \right)\frac{{RT^{2} }}{\varPhi }} \right]^{{n^{\prime}_{z} }} {\kern 1pt} {\kern 1pt} {\text{rect}}\left( {\frac{{T - {{\left( {T_{z}^{*} + T^{\prime}_{z} } \right)} \mathord{\left/ {\vphantom {{\left( {T_{z}^{*} + T^{\prime}_{z} } \right)} 2}} \right. \kern-0pt} 2}}}{{T^{\prime}_{z} - T_{z}^{*} }}} \right) + C_{z} H\left( {T - T^{\prime}_{z} } \right)} \hfill \\ + \sum\limits_{k = i + 1}^{i + j} { \pm \left[ {K^{\prime}_{0k} \exp \left( { - \frac{{Q_{k} }}{RT}} \right)\frac{{RT^{2} }}{\varPhi }} \right]^{{n^{\prime}_{k} }} {\kern 1pt} {\kern 1pt} \times {\text{rect}}\left( {\frac{{T - {{\left( {T_{k}^{*} + T^{\prime}_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {T_{k}^{*} + T^{\prime}_{k} } \right)} 2}} \right. \kern-0pt} 2}}}{{T^{\prime}_{k} - T_{k}^{*} }}} \right) + C_{k} H\left( {T - T^{\prime}_{k} } \right)} \hfill \\ = \sum\limits_{z = 1}^{i} { \pm C_{z} } + \sum\limits_{k = i + 1}^{i + j} { \pm \left[ {K^{\prime}_{0k} \exp \left( { - \frac{{Q_{k} }}{RT}} \right)\frac{{RT^{2} }}{\varPhi }} \right]^{{n^{\prime}_{k} }} } \hfill \\ \end{gathered}, $$
(63)

where the two terms represent the contributions from i ended sub-process and from j active sub-processes, respectively.

Similarly, if only one sub-process is prevailing, i.e. j = 1, using the same procedure in Eqs. (30)–(37) the rate equation can be given as

$$ \frac{df}{dT} = \left[ {\frac{{n^{\prime}_{i + 1} Q_{i + 1} }}{{1 \pm \left( {r_{2i + 1,2i + 2} } \right)^{ - 1} }}\frac{1}{{RT^{2} }} + \frac{{n^{\prime}_{i + 1} }}{{1 \pm \left( {r_{2i + 1,2i + 2} } \right)^{ - 1} }}\frac{2}{T}} \right]\left( {1 - f} \right)\left( { - \ln \left( {1 - f} \right)} \right) $$
(64)

with the ratio \( r_{2i + 1,2i + 2} = {{\left[ {K_{0i + 1} \exp \left( { - {{Q_{i + 1} } \mathord{\left/ {\vphantom {{Q_{i + 1} } {RT}}} \right. \kern-0pt} {RT}}} \right)\left( {t - t_{i + 1}^{*} } \right)} \right]^{{n_{i + 1} }} } \mathord{\left/ {\vphantom {{\left[ {K_{0i + 1} \exp \left( { - {{Q_{i + 1} } \mathord{\left/ {\vphantom {{Q_{i + 1} } {RT}}} \right. \kern-0pt} {RT}}} \right)\left( {t - t_{i + 1}^{*} } \right)} \right]^{{n_{i + 1} }} } {\sum\nolimits_{z = 1}^{j} { \pm C_{z} } }}} \right. \kern-0pt} {\sum\nolimits_{z = 1}^{j} { \pm C_{z} } }} \). Equation (64) can be compared with the classical non-isothermal rate equation [26],

$$ \frac{{{\text{d}}f}}{{{\text{d}}T}} = \left[ {\frac{nQ}{{RT^{2} }} + \frac{2n}{T}} \right]\left( {1 - f} \right)\left( { - \ln \left( {1 - f} \right)} \right). $$
(65)

By comparing Eqs. (64) and (65), the expressions for kinetic parameters incorporating the effect of T * z result,

$$ n_{i + 1}^{*} = \frac{{n^{\prime}_{i + 1} }}{{1 \pm \left( {r_{2i + 1,2i + 2} } \right)^{ - 1} }} $$
(66a)
$$ Q_{i + 1}^{*} = \frac{1}{{n_{i + 1}^{*} }}\left[ {\frac{{n^{\prime}_{i + 1} Q_{i + 1} }}{{1 \pm \left( {r_{2i + 1,2i + 2} } \right)^{ - 1} }}} \right]. $$
(66b)

Similarly, for the transformation with j active sub-processes in the range, it will give the general rate equation,

$$ \frac{{{\text{d}}f}}{{{\text{d}}T}} = \left[ {\frac{{n_{i + j}^{ * } Q_{i + j}^{ * } }}{{RT^{2} }} + \frac{{2n_{i + j}^{ * } }}{T}} \right]\left( {1 - f} \right)\left( { - \ln \left( {1 - f} \right)} \right) $$
(67)

with the recursive relation for the kinetic parameters,

$$ n_{i + j}^{*} = \frac{{n_{i + j - 1}^{*} }}{{1 \pm r_{2i + 2j - 1,2i + 2j} }} + \frac{{n^{\prime}_{i + j} }}{{1 \pm \left( {r_{2i + 2j - 1,2i + 2j} } \right)^{ - 1} }}. $$
(68a)
$$ Q_{i + j}^{*} = \frac{1}{{n_{i + k}^{*} }}\left[ {\frac{{n_{i + j - 1}^{*} Q_{i + j - 1}^{*} }}{{1 \pm r_{2i + 2j - 1,2i + 2j} }} + \frac{{n^{\prime}_{i + j} Q_{i + j} }}{{1 \pm \left( {r_{2i + 2j - 1,2i + 2j} } \right)^{ - 1} }}} \right]. $$
(68b)
$$ r_{2i + 2j - 1,2i + 2j} = \frac{{x_{{{\text{e}}\left( {i + j} \right)}} }}{{\sum\nolimits_{z = 1}^{i} { \pm C_{z} } + \sum\nolimits_{k = i + 1}^{i + j - 1} { \pm x_{{{\text{e}}k}} } }}. $$
(68c)

For K 0k ′ and r k ′, see Eq. (62a–c).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YH., Liu, F., Sun, B. et al. Kinetic description for solid-state transformation using an approach of summation/product transition. J Mater Sci 49, 5119–5140 (2014). https://doi.org/10.1007/s10853-014-8221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8221-4

Keywords

Navigation