Skip to main content
Log in

Review: achieving superplasticity in metals processed by high-pressure torsion

  • Ultrafinegrained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is now well established that processing by equal-channel angular pressing (ECAP) leads to grain refinement and produces materials having the potential for exhibiting extensive superplastic flow at elevated temperatures. High-pressure torsion (HPT) is also an effective procedure for refining the grain sizes of polycrystalline metals to the submicrometer or even the nanometer level, and recent results show that this processing method also gives materials that exhibit excellent superplastic characteristics. This report examines the various publications describing superplasticity in metallic alloys processed by HPT. A comprehensive tabulation is presented listing all of the results to date showing true superplastic elongations of at least 400 % after processing by HPT. Examples of superplastic elongations are described for tensile tests conducted using specimens cut from either disk or ring samples. An analysis shows that the flow behavior of various Al and Mg alloys is in good agreement with the predicted flow behavior for conventional superplastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010

    Article  Google Scholar 

  2. Barnes AJ (2007) Superplastic forming 40 years and still growing. J Mater Eng Perform 16:440–454

    Article  Google Scholar 

  3. Langdon TG (1982) The mechanical properties of superplastic materials. Metall Trans A 13A:689–701

    Article  Google Scholar 

  4. Langdon TG (1994) An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater Sci Eng A 174:225–230

    Article  Google Scholar 

  5. Falk LKL, Howell PR, Dunlop GL, Langdon TG (1986) The role of matrix dislocations in the superplastic deformation of a copper alloy. Acta Metall 34:1203–1214

    Article  Google Scholar 

  6. Valiev RZ, Langdon TG (1993) An investigation of the role of intragranular dislocation strain in the superplastic Pb–62 % Sn eutectic alloy. Acta Metall Mater 41:949–954

    Article  Google Scholar 

  7. Xun Y, Mohamed FA (2003) Slip-accommodated superplastic flow in Zn–22 wt% Al. Phil Mag 83:2247–2266

    Article  Google Scholar 

  8. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443

    Article  Google Scholar 

  9. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  10. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  11. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  12. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796

    Article  Google Scholar 

  13. Valiev RZ, Kaibyshev OA, Kuznetsov RI, Musalimov RSh, Tsenev NK (1988) Low-temperature superplasticity of metallic materials. Dokl Akad Nauk SSSR (Proc USSR Acad Sci) 301:864–866

    Google Scholar 

  14. Langdon TG (2007) Ultrafine-grained materials: a personal perspective. Int J Mater Res 98:251–254

    Article  Google Scholar 

  15. Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK, Valiev RZ, Ma Y, Langdon TG (1993) An investigation of ductility and microstructural evolution in an Al–3 % Mg alloy with submicron grain size. J Mater Res 8:2810–2818

    Article  Google Scholar 

  16. Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng A 137:35–40

    Article  Google Scholar 

  17. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A 168:141–148

    Article  Google Scholar 

  18. Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Significance of microstructural control for superplastic deformation and forming. Mater Trans JIM 37:336–339

    Article  Google Scholar 

  19. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater 37:1945–1950

    Article  Google Scholar 

  20. Higashi K, Mabuchi M, Langdon TG (1996) High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ Intl 36:1423–1438

    Article  Google Scholar 

  21. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater 44:2753–2758

    Article  Google Scholar 

  22. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  23. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660

    Article  Google Scholar 

  24. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  25. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Structural refinement of low alloyed steels during severe plastic deformation. Mater Sci Eng A 387–389:809–816

    Article  Google Scholar 

  26. Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall Mater Trans A 37A:1963–1968

    Article  Google Scholar 

  27. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  28. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34

    Article  Google Scholar 

  29. Loucif A, Figueiredo RB, Kawasaki M, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J Mater Sci 47:7815–7820

    Article  Google Scholar 

  30. An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scripta Mater 64:954–957

    Article  Google Scholar 

  31. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Enhanced strength-ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scripta Mater 66:227–230

    Article  Google Scholar 

  32. Kawasaki M, Langdon TG (2011) Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion. Mater Sci Eng A 528:6140–6145

    Article  Google Scholar 

  33. Ishikawa H, Mohamed FA, Langdon TG (1975) The influence of strain rate on ductility in the superplastic Zn–22 % Al eutectoid. Phil Mag 32:1269–1271

    Article  Google Scholar 

  34. Langdon TG (1991) The physics of superplastic deformation. Mater Sci Eng A 137:1–11

    Article  Google Scholar 

  35. Langdon TG (1982) Fracture processes in superplastic flow. Metal Sci 16:175–183

    Article  Google Scholar 

  36. Kawasaki M, Langdon TG (2008) Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation. Mater Trans 49:84–89

    Article  Google Scholar 

  37. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The shearing characteristics associated with equal-channel angular pressing. Mater Sci Eng A 257:328–332

    Article  Google Scholar 

  38. Morrison WB (1968) Elongation of superplastic alloys. Trans TMS-AIME 242:2221–2227

    Google Scholar 

  39. Ahmed MMI, Langdon TG (1977) Exceptional ductility in the superplastic Pb–62 pct Sn eutectic. Metall Trans A 8A:1832–1833

    Article  Google Scholar 

  40. Ma Y, Langdon TG (1994) Factors influencing the exceptional ductility of a superplastic Pb–62 Sn alloy. Metall Mater Trans A 25A:2309–2311

    Article  Google Scholar 

  41. Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Influence of specimens dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Mater 59:627–630

    Article  Google Scholar 

  42. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng A 525:68–77

    Article  Google Scholar 

  43. Kawasaki M, Foissey J, Langdon TG (2013) Development of hardness homogeneity and superplastic behavior in an aluminum-copper eutectic alloy processed by high-pressure torsion. Mater Sci Eng A 561:118–125

    Article  Google Scholar 

  44. Harai Y, Kai M, Kaneko K, Horita Z, Langdon TG (2008) Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion. Mater Trans 49:76–83

    Article  Google Scholar 

  45. Erbel S (1979) Mechanical properties and structure of extremely strain-hardened copper. Metals Technol 6:482–486

    Article  Google Scholar 

  46. Saunders I, Nutting J (1984) Deformation of metals to high strains using combination of torsion and compression. Metal Sci 18:571–575

    Article  Google Scholar 

  47. Harai Y, Edalati K, Horita Z, Langdon TG (2009) Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Mater 57:1147–1153

    Article  Google Scholar 

  48. Mishra RS, Valiev RZ, McFadden SX, Islamgaliev RK, Mukherjee AK (2001) High-strain-rate superplasticity from nanocrystalline Al alloy 1420 at low temperatures. Phil Mag A 81:37–48

    Article  Google Scholar 

  49. Islamgaliev RK, Yunusova NF, Valiev RV (2006) The influence of the SPD temperature on superplasticity of aluminium alloys. Mater Sci Forum 503–504:585–590

    Article  Google Scholar 

  50. Perevezentsev VN, Shcherban MYu, Murashkin MYu, Valiev RZ (2007) High-strain-rate superplasticity of nanocrystalline aluminum alloy 1570. Tech Phys Lett 33:648–650

    Article  Google Scholar 

  51. Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 408:141–146

    Article  Google Scholar 

  52. Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion. Mater Sci Eng A 500:170–175

    Article  Google Scholar 

  53. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J Mater Sci 47:7789–7795

    Article  Google Scholar 

  54. Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 393:344–351

    Article  Google Scholar 

  55. Horita Z, Langdon TG (2008) Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scripta Mater 58:1029–1032

    Article  Google Scholar 

  56. Torbati-Sarraf SA, Langdon TG (2014) Mechanical properties of ZK60 magnesium alloy processed by high-pressure torsion. Adv Mater Research (in press)

  57. Kai M, Horita Z, Langdon TG (2008) Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A 488:117–124

    Article  Google Scholar 

  58. Kulyasova OB, Islamgaliev RK, Kil’mametov AR, Valiev RZ (2006) Superplastic behavior of magnesium-based Mg–10 wt% Gd alloy after severe plastic deformation by torsion. Phys Met Metall 101:585–590

    Article  Google Scholar 

  59. Mishra RS, Valiev RZ, McFadden SX, Mukherjee AK (1998) Tensile superplasticity in a nanocrystalline nickel aluminide. Mater Sci Eng A 252:174–178

    Article  Google Scholar 

  60. Valiev RZ, Song C, McFadden SX, Mukherjee AK, Mishra RS (2001) TEM/HREM observations of nanostructured superplastic Ni3Al. Phil Mag A 81:25–36

    Article  Google Scholar 

  61. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2000) Enhanced superplasticity in a Ti–6Al–4V alloy processed by severe plastic deformation. Scripta Mater 43:819–824

    Article  Google Scholar 

  62. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2002) Superplastic behaviour of ultrafine-grained Ti–6A1–4V alloys. Mater Sci Eng A 323:318–325

    Article  Google Scholar 

  63. Kawasaki M, Langdon TG (2014) Microstructure development and superplasticity in a Zn–22 % Al eutectoid alloy processed by severe plastic deformation. Mater Sci Forum (in press)

  64. Cho T-S, Lee H-J, Ahn B, Kawasaki M, Langdon TG (2014) Microstructural evolution and mechanical properties in a Zn–Al eutectoid alloy processed by high-pressure torsion. Acta Mater. doi:10.1016/j.actamat.2014.03.026

    Google Scholar 

  65. Kawasaki M, Balasubramanian N, Langdon TG (2011) Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater Sci Eng A 528:6624–6629

    Article  Google Scholar 

  66. Mohamed FA, Langdon TG (1974) Deformation mechanism maps based on grain size. Metall Trans 5:2339–2345

    Article  Google Scholar 

  67. Mohamed FA, Langdon TG (1975) Creep at low stress levels in the superplastic Zn 22 % Al eutectoid. Acta Metall 23:117–124

    Article  Google Scholar 

  68. Vagarali SS, Langdon TG (1982) Deformation mechanisms in h.c.p. metals at elevated temperatures—II. Creep behavior of a Mg–0.8 % Al solid solution alloy. Acta Metall 30:1157–1170

    Article  Google Scholar 

  69. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, M., Langdon, T.G. Review: achieving superplasticity in metals processed by high-pressure torsion. J Mater Sci 49, 6487–6496 (2014). https://doi.org/10.1007/s10853-014-8204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8204-5

Keywords

Navigation