Skip to main content
Log in

Temperature-dependent thermal conductivities of non-alloyed and high-alloyed heat-treatable steels in the temperature range between 20 and 500 °C

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work investigates the temperature-dependent thermal conductivity of the heat-treatable steels C45, 40CrMnMo7, and X42Cr13 in a high-tempered condition. The results reveal that the temperature-dependent evolution of the thermal conductivity is strongly influenced by alloying composition. Furthermore, not only the thermal diffusivity but also the specific isobaric heat capacity has a major impact on the resulting thermal conductivity at higher temperatures. The results are discussed with respect to the resulting microstructures and under consideration of Calphad calculations. The results are relevant for the thermal design of tools, particularly those used for high-pressure die casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson MJ, McGuire K, Zante RC, Ion WJ, Rosochowski A, Brooks JW (2013) Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy. J Mater Process Technol 213(1):111

    Article  Google Scholar 

  2. Firrao D, Matteis P, Russo Spena P, Gerosa R (2013) Influence of the microstructure on fatigue and fracture toughness properties of large heat-treated mold steels. Mater Sci Eng A 559:371–383

    Article  Google Scholar 

  3. Valls I, Casas R, Rodriguez N, Paar U (2010) Benefits from using high thermal conductivity tool steels in the hot forming of steels. La Metallurgia Italiana 11–12:23–28

    Google Scholar 

  4. Klobcar D, Tusek J, Taljat B (2008) Thermal fatigue of materials for die-casting tooling. Mater Sci Eng A 472:198–207

    Article  Google Scholar 

  5. Valls I, Casas B, Rodriguez N (2009) Importacce of tool material thermal conductivity. In: Beiss P, Broeckmann C, Franke S, Keysselitz B (eds) The die longevity and product quality in HPDC. in Tool steels - deciding factor in worldwide production, vol 1. Mainz, Aachen, pp 127–140

    Google Scholar 

  6. Hamasaiid A, Valls I, Heid R, Eibisch H (2012) A comparative experimental study on the use of two hot work tool steels for high pressure die casting of aluminum alloys: High thermal conductivity HTCS\(\textregistered \) and conventional 1.2343 (AISI 11). In: Leitner H, Kranz R, Tremmel A (eds) TOOL 2012. Verlag Gutenberghaus, Knittelfeld, pp 153–161

    Google Scholar 

  7. Zhang B, Chen W, Poirier DR (2000) Effect of solidification cooling rate on the fatigue life of A356.2-T6 cast aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures 23(5):417–423

    Article  Google Scholar 

  8. Hill H (2011) Neuartige Metallmatrixverbundwerkstoffe (MMC) zur Standzeiterhöhung verschleißbeanspruchter Werkzeuge in der polymerverarbeitenden Industrie. Eigenverlag des Lehrstuhls Werkstofftechnik der Ruhr-Universität Bochum, Bochum

    Google Scholar 

  9. Liu XF, Liu FQ, Yu BH, Bi C, Zhang B (2012) Pelletization quality simulation for operation uncertainty of die-plate based on liquid-solid-liquid coupling model. Adv Mater Res 557–559:2266–2273

    Article  Google Scholar 

  10. Geiger M, Merklein M, Hoff C (2005) Basic Investigations on the Hot Stamping Steel 22MnB5. Adv Mater Res 6–8:795–804

    Article  Google Scholar 

  11. Lenze FJ, Sikora S, Banik J, Straube O (2009) Hot forming-new potentials for innovative manufacturing. Steel Grips 7(6):428–432

    Google Scholar 

  12. Wilzer JJ, Lüdtke FS, Weber S, Theisen W (2013) The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels. J Mater Sci 48(24):8483–8492. doi:10.1007/s10853-013-7665-2

    Article  Google Scholar 

  13. Berns H, Theisen W (2008) Eisenwerkstoffe: Stahl und Gusseisen, 4th edn. Springer, Berlin

    Google Scholar 

  14. Kohlhaas R, Kierspe W (1965) Wärmeleitfähigkeit von reinem Eisen und einigen ferritischen und austenitischen Stählen zwischen der Temperatur der flüssigen Luft und Raumtemperatur. Archiv für das Eisenhüttenwesen 36(4):301–309

    Google Scholar 

  15. Richter F, Kohlhaas R (1965) Wärmeleitfähigkeit des reinen Eisens zwischen -180 und 1000\(^{\circ }\)C unter besonderer Berücksichtigung von Phasenumwandlungen. Archiv für das Eisenhüttenwesen 36(11):827–833

    Google Scholar 

  16. Lange KW (1970) Zur Temperaturleitfähigkeit des Eisens. Archiv für das Eisenhüttenwesen 41(6):559–562

    Google Scholar 

  17. Bungardt K, Spyra W (1965) Wärmeleitfähigkeit unlegierter und legierter Stähle und Legierungen bei Temperaturen zwischen 20 und 700\(^{\circ }\)C. Archiv für das Eisenhüttenwesen 36(4):257–267

    Google Scholar 

  18. Richter F (1973) ie wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen: Mitteilung aus dem Forschungsinstitut der Mannesmann AG, vol Heft 8. Stahleisen, Düsseldorf

    Google Scholar 

  19. Richter F (1983) Physikalische eigenschaften von Stählen und ihre temperaturabhängigkeit: polynome und graphische darstellungen, vol Heft 10. Stahleisen, Düsseldorf

    Google Scholar 

  20. Maurer E (1936) Wärmeleitfähigkeit von chromhaltigen Stählen bei hohen Temperaturen. Archiv für das Eisenhüttenwesen 10(4):145–155

    Google Scholar 

  21. Esser H, Eilender W, Pütz E (1938) Die Wärmeleitfähigkeit von technisch reinem Eisen und verschiedenen Stählen. Archiv für das Eisenhüttenwesen 11(12):619–622

    Google Scholar 

  22. Terada Y, Ohkubo K, Mohri T, Suzuki T (2002) Effects of alloying additions on thermal conductivity of ferritic iron. ISIJ Int 42(3):322–324

    Article  Google Scholar 

  23. Mayerhofer J (2012) Aspect of machining advanced mould and die steels. In: Leitner H, Kranz R, Tremmel A (eds) TOOL 2012. Verlag Gutenberghaus, Knittelfeld, pp 325–333

    Google Scholar 

  24. Berns H, Kettel J (1976) Ermittlung der Zusammensetzung von Grundmasse und Carbiden durch Rückstandsisolierung bei ledeburitischen Chromstählen. Archiv für das Eisenhüttenwesen 47(6):391–393

    Google Scholar 

  25. P. Shi, B. Sundmann. Tcc™: Thermo-calc\(\textregistered \) software, Stockholm (2010)

  26. Hust JG (1983) Thermal conductivity and thermal diffusivity. In: Reed RP, Clark AF (eds) Materials at low temperatures. American Society for Metals, Metals Park, pp 133–161

    Google Scholar 

  27. Tritt T, Weston D (2010) Measurement techniques and considerations for determining thermal conductivity of bulk materials. In: Tritt T (ed) Thermal conductivity. Springer, New York, pp 187–203

    Google Scholar 

  28. Patterson J, Morris E (1994) Measurement of absolute water density, 1\(^{\circ }\)C to 40\(^{\circ }\)C. Metrologia 31(4):277–288

    Article  Google Scholar 

  29. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32(9):1679–1684

    Article  Google Scholar 

  30. Kaschnitz E, Ebner R (2007) Thermal diffusivity of the aluminum alloy Al-17Si-4Cu (A390) in the solid and liquid states. Int J Thermophys 28(2):711

    Article  Google Scholar 

  31. Kaschnitz E, Küblböck M (2008) Thermal diffusivity of the aluminum alloy Al-5Mg-2Si-Mn (Magsimal-59) in the solid and liquid states. High Temp High Press 37:221–230

    Google Scholar 

  32. Pepperhoff W, Acet M (2001) Constitution and magnetism of iron and its alloys. Springer, Berlin

    Book  Google Scholar 

  33. Krauss G, Grossmann MA (1980) Principles of heat treatment of steel. American Society for Metals, Metals Park. http://www.worldcat.org/oclc/6357331

  34. Porter D, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  35. Bjärbo A, Hättestrand M (2001) Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel: an experimental and theoretical study. Metall Mater Trans A 32:19–27

    Article  Google Scholar 

  36. Schneider A, Inden G (2005) Simulation of the kinetics of precipitation reactions in ferritic steels. Acta Materialia 53:519–531

    Article  Google Scholar 

  37. Rokhmanov NY, Sirenko AF, Bakharev SA (1997) Thermal expansion of cementite in hypereutectoid iron-carbon alloy. Met Sci Heat Treat 39(1–2):7–10

    Article  Google Scholar 

  38. Friedrich C, Berg G, Broszeit E, Berger C (1997) Datensammlung zu Hartstoffeigenschaften. Materialwissenschaft und Werkstofftechnik 28:59–76

    Article  Google Scholar 

  39. Weiss RJ, Tauer KJ (1956) Components of the thermodynamic functions of iron. Phys Rev 102(6):1490–1495

    Article  Google Scholar 

  40. Braun M, Kohlhaas R (1965) Die spezifische Wärme von Eisen, Kobalt und Nickel im Bereich hoher Temperaturen. Physica Status Solidi 12(1):424–429

    Article  Google Scholar 

  41. Cezairliyan A, Ho CY, Anderson AC (1988) Specific heat of solids, vol I–2. Hemisphere Publishing Corporation, New York

    Google Scholar 

  42. Richter F, Born L (1984) Die spezifische Wärmekapazität von metallischen Werkstoffen: 1. Teil: Ferritische, umwandlungsfähige Stähle. Archiv für das Eisenhüttenwesen 55(3):127–132

    Google Scholar 

  43. Olsson P, Abrikosov IA, Wallenius J (2006) Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys. Phys Rev B 73:104416

    Article  Google Scholar 

  44. Lavrentiev MY, Dudarev SL, Nguyen-Manh D (2011) Magnetic cluster expansion model for high-temperature magnetic properties of iron and iron-chromium alloys. J Appl Phys 109:07E123

    Article  Google Scholar 

  45. Xiong W, Hedström P, Selleby M, Odqvist J, Thuvander M, Chen Q (2011) An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments. CALPHAD 35:355–366

    Article  Google Scholar 

  46. Lavrentiev MY, Mergia K, Gjoka M, Nguyen-Manh D (2012) Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe–Cr alloys. J Phys Condense Matter 24:326001

    Article  Google Scholar 

  47. Ruban AV, Razumovskiy VI (2012) First-principles based thermodynamic model of phase equilibria in bcc Fe–Cr alloys. Phys Rev B 86:174111

    Article  Google Scholar 

  48. Reed RP, Clark AF (eds.) (1983) Materials at low temperatures. American Society for Metals, Metals Park. http://www.worldcat.org/oclc/9726458

  49. The American Society for Testing and Materials (2001) Standard test method for thermal diffusivity by the flash method, 1st edn. ASTM, West Conshohocken

  50. Carslaw HS, Jaeger JC (1986) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  51. Venkanna BK (2010) Fundamentals of heat and mass transfer. PHI Learning Private Limited, New Delhi

    Google Scholar 

  52. Bürgel R, Maier HJ, Niendorf T (2011) Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen, 4th edn. Vieweg + Teubner, Wiesbaden

    Book  Google Scholar 

  53. Gavriljuk VG, Shanina BD, Berns H (2000) On the correlation between electron structure and short range atomic order in iron-based alloys. Acta Materialia 48:3879–3893

    Article  Google Scholar 

  54. Korzhavyi PA, Ruban AV (2009) Electronic structure and effective chemical and magnetic exchange interactions in bcc Fe-Cr alloys. Phys Rev B 79(5): 054202 (1–16)

    Google Scholar 

  55. Fert A, Campell IA (1968) Two-current conduction in nickel. Phys Rev Lett 21(16):1190–1192

    Google Scholar 

  56. Fert A (2008) Ursprung, Entwicklung und Zukunft der Spintronik: Nobel-Vortrag. Angewandte Chemie 120:6042–6054

    Article  Google Scholar 

  57. Bäcklund NG (1961) An experimental investigation of the electrical and thermal conductivity of iron and some dilute iron alloys at temperatures above 100 K. J Phys Chem Solids 20(1/2):1–16

    Article  Google Scholar 

  58. Yang J (2010) Theory of Thermal Conductivity. In: Tritt T (ed) Thermal conductivity. Springer, New York, pp 1–20

    Google Scholar 

  59. Uher C (2010) Thermal Conductivity of Metals. In: Tritt T (ed) Thermal conductivity. Springer, New York, pp 22–88

    Google Scholar 

  60. Kittel C (2006) Einführung in die Festkörperphysik, 14th edn. Oldenbourg, München

    Google Scholar 

  61. Hofmann JA, Paskin A, Tauer KJ, Weiss RJ (1956) Analysis of ferromagnetic and antiferromagnetic second-order transitions. J Phys Chem Solids 1:45–60

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) under support code TH531/13-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Wilzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilzer, J., Küpferle, J., Weber, S. et al. Temperature-dependent thermal conductivities of non-alloyed and high-alloyed heat-treatable steels in the temperature range between 20 and 500 °C. J Mater Sci 49, 4833–4843 (2014). https://doi.org/10.1007/s10853-014-8183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8183-6

Keywords

Navigation