Skip to main content
Log in

Ammonia sensing properties of (SnO2–ZnO)/polypyrrole coaxial nanocables

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, (SnO2–ZnO)/polypyrrole (PPy) coaxial nanocables have been synthesized through simple chemical routes. The SnO2–ZnO composite nanofibers with narrow distribution of diameter size and an average of 75 nm were synthesized via the electrospinning method. In this experiment, we were able to polymerize a shell of PPy, as a typical conducting polymer, on surface of SnO2–ZnO nanofibers using the vapor-phase polymerization of Pyrrole monomer. The prepared nanomaterial exhibits a linear response to Ammonia (NH3) concentrations at room temperature. The obtained results make NH3 detection and determination of its concentration feasible. The superior features of this nanomaterial include simple synthesis method, high sensitivity, and quick response and recovery times. The aforementioned characteristics of this nanomaterial indicate the potential of industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jafarpour MM, Foolad A, Mansouri MK, Nikbakhsh Z, Saeedizade H (2010) World Acad Sci Eng Technol 70:940

    Google Scholar 

  2. Jorgensen TC, Weatherley LR (2003) Water Res 37:1723

    Article  PubMed  CAS  Google Scholar 

  3. Huijsmans JFM, Hol JMG, Vermeulen GD (2003) Atmos Environ 37:3669

    Article  CAS  ADS  Google Scholar 

  4. Kundra A, Jain A, Banga A, Bajaj G, Kar P (2005) Clin Biochem 38:696

    Article  PubMed  CAS  Google Scholar 

  5. Bernal W, Hall C, Karvellas CJ, Auzinger G, Sizer E, Wendon J (2007) Hepatology 46:1844

    Article  PubMed  CAS  Google Scholar 

  6. Bai H, Shi G (2007) Sensors 7:267

    Article  CAS  PubMed Central  Google Scholar 

  7. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2003) J Optoelectron Adv Mater 5:1335

    CAS  Google Scholar 

  8. Shang Y, Wang X, Xu E, Tong C, Wu J (2011) Anal Chim Acta 685:58

    Article  PubMed  CAS  Google Scholar 

  9. Lin CW, Chen HI, Chen TY, Huang CC, Hsu CS, Liu RC, Liu WC (2011) Sens Actuators B 160:1481

    Article  CAS  Google Scholar 

  10. Wang Y, Jia W, Strout T, Schempf A, Zhang H, Li B, Cui J, Lei Y (2009) Electroanalysis 21:1432

    Article  CAS  Google Scholar 

  11. Ameer Q, Adeloju SB (2005) Sens Actuators B 106:541

    Article  CAS  Google Scholar 

  12. Iroh JO, Levine K (2002) Eur Polym J 38:1547

    Article  CAS  Google Scholar 

  13. Li CM, Sun CQ, Chen W, Pan L (2005) Surf Coat Technol 198:474

    Article  CAS  Google Scholar 

  14. Ge D, Mu J, Huang S, Liang P, Gcilitshana OU, Ji S, Linkov V, Shi W (2001) Synth Met 161:166

    Article  Google Scholar 

  15. Muller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Synth Met 161:106

    Article  Google Scholar 

  16. Ferenets M, Harlin A (2007) Thin Solid Films 515:5324

    Article  CAS  ADS  Google Scholar 

  17. Zhang D, Luo L, Liao Q, Wang H, Fu H, Yao J (2011) J Phys Chem C 115:2360

    Article  CAS  Google Scholar 

  18. Tran HD, Shin K, Hong WG, D’Arcy JM, Kojima RW, Weiller BH, Kaner RB (2007) Macromol Rapid Commun 28:2289

    Article  CAS  Google Scholar 

  19. Feng J, Yan W, Zhang L (2009) Microchim Acta 166:261

    Article  CAS  Google Scholar 

  20. Kang TS, Lee SW, Joo J, Lee JY (2005) Synth Met 153:61

    Article  CAS  Google Scholar 

  21. Srivastava Y, Loscertales I, Marquez M, Thorsen T (2007) Microfluid Nanofluid 5:445

    Google Scholar 

  22. Chronakis IS, Grapenson S, Jakob A (2006) Polymer 47:1597

    Article  CAS  Google Scholar 

  23. Jensen BW, Chen J, West K, Wallace G (2004) Macromolecules 37:5930

    Article  ADS  Google Scholar 

  24. Chen D, Zhang H, Hu S, Li J (2008) J Phys Chem C 112:117

    Article  CAS  Google Scholar 

  25. Lu X, Zhao Q, Liu X, Wang D, Zhang W, Wang C, Wei Y (2006) Macromol Rapid Commun 27:430

    Article  CAS  Google Scholar 

  26. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325

    Article  PubMed  CAS  Google Scholar 

  27. Khorami HA, Keyanpour-Rad M, Vaezi MR (2011) Appl Surf Sci 257:7988

    Article  CAS  ADS  Google Scholar 

  28. Vaezi MR, Sadrnezhaad SK (2007) Mater Sci Eng B 140:73

    Article  CAS  Google Scholar 

  29. Khorami HA, Kianpoor-rad M, Vaezi MR (2010) J Nanocompos Mater Res 5:1

    Google Scholar 

  30. Hernandez SC, Chaudhuri D, Chen W, Myung NV (2007) Electroanalysis 19:2125

    Article  CAS  Google Scholar 

  31. Yoon H, Chang M, Jang J (2006) J Phys Chem B 110:14074

    Article  PubMed  CAS  Google Scholar 

  32. Gangopadhyay R, De A (2001) Sens Actuators B 77:326

    Article  CAS  Google Scholar 

  33. Karunagaran B, Uthirakumar P, Chung SJ, Velumani S, Suh EK (2007) Mater Charact 58:680

    Article  CAS  Google Scholar 

  34. Makhija KK, Ray A, Patel RM, Trivedi UB, Kapse HN (2005) Bull Mater Sci 28:9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Akbari Khorami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorami, H.A., Eghbali, A., Keyanpour-Rad, M. et al. Ammonia sensing properties of (SnO2–ZnO)/polypyrrole coaxial nanocables. J Mater Sci 49, 685–690 (2014). https://doi.org/10.1007/s10853-013-7749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7749-z

Keywords

Navigation