Skip to main content
Log in

Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30. Part I: Microstructure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure of Fe30Ni20Mn20Al30 in both the as-cast condition and after annealing at 823 K for various times up to 72 h was characterized using transmission electron microscopy, scanning transmission electron microscopy, synchrotron-based X-ray diffraction, and atom probe tomography. The microstructure exhibited a basketweave morphology of (Mn, Fe)-rich B2-ordered (ordered b.c.c.) and (Ni, Al)-rich L21-ordered (Heusler type) phases with a lattice misfit of only 0.85 % and interfaces aligned along 〈100〉. The phase width increased from 5 nm for the as-cast alloy to 25 nm for 72 h annealed material, with no change in the elemental partitioning between the phases, with a time exponent for the coarsening kinetics of 0.19. Surprisingly, it was found that the room temperature hardness was largely independent of the phase width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hanna JA, Baker I, Wittman MW, Munroe PR (2005) J Mater Res 20:791

    Article  CAS  Google Scholar 

  2. Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) Proc Microsc Microanal 11:1864

    Google Scholar 

  3. Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) Processing and Fabrication of Advanced Materials XIV with Frontiers in Materials Science: Innovative Materials and Manufacturing Techniques, p 237–248

  4. Loudis JA, Baker I (2008) Microsc Res Tech 71:489

    Article  CAS  Google Scholar 

  5. Loudis JA, Boyd TC, Coen D, Baker I (2007) Advanced Intermetallic-Based Alloys. Proceedings of the Materials Research Society, 980, 0980-II01-02980

  6. Loudis JA, Baker I (2007) Phil Mag 87(35):5639

    Article  CAS  Google Scholar 

  7. Baker I, Zheng RK, Saxey DW, Kuwano S, Wittmann MW, Loudis JA, Prasad KS, Liu Z, Marceau R, Ringer SP (2009) Intermetallics 17:886

    Article  CAS  Google Scholar 

  8. Wu X, Baker I, Miller MK, More K (2009) Microsc Microanal 15:116

    Article  Google Scholar 

  9. Wittmann MW, Baker I, Hanna JA, Munroe PR (2005) Proc Mater Res Soc 842(S5.17):1

    Google Scholar 

  10. Wu X, Baker I, Wu H (2012) Proceeding of the Fall Materials Research Society Meeting, Boston, 25–30th November, in press

  11. Baker I, Liao Y, Wu X, Wu H, Miller MK, Russell KF, Munroe PR (2010) Proc 139th Annual Meeting & Exhibition, Supplemental Proceedings, vol 3, General Paper Selections

  12. Baker I, Wu H, Wu X, Miller MK, Russell KF, Munroe PR (2011) Mater Charact 62:952

    Article  CAS  Google Scholar 

  13. Cai Z, Lai B, Yun W, Ilinski P, Legnini D, Maser J, Rodrigues W (2000) In: Meyer-Ilse W, Warwick T, Attwood D (Eds) X-ray Microscopy: Proceedings of the Sixth International Conference

  14. Dejus R, Vasserman I, Sasaki S, Moog Undulator E (2002), A Magnetic properties and Spectral Performance, Report ANL/APS/TB-45. Argonne National Laboratory, Argonne

  15. Libera J, Cai Z, Lai B, Xu S (2002) Rev Sci Instrum 73(3):1506

    Article  CAS  Google Scholar 

  16. Miller MK, Russell KF, Thompson GB (2005) Ultramicroscopy 102:287

    Article  CAS  Google Scholar 

  17. Hellman OC, Vandenbroucke JA, Rüsing J, Isheim D, Seidman DN (2000) Microsc Microanal 6:437

    CAS  Google Scholar 

  18. Bradley AJ, Taylor A (1937) Proc Royal Soc A159(896):56

    Article  Google Scholar 

  19. Donaldson AT, Rawlings RD (1976) Scr Metall Mater 24:811

    CAS  Google Scholar 

  20. Kogachi M, Minamigawa S, Nakhigashi K (1992) Acta Metall Mater 40:1113

    Article  CAS  Google Scholar 

  21. Xiao H, Baker I (1994) Acta Metall Mater 42:1535

    Article  CAS  Google Scholar 

  22. Xiao H, Baker I (1995) Acta Metall Mater 43:391

    CAS  Google Scholar 

  23. ASM Handbook (1992) Alloy Phase Diagrams, vol 3, ASM International, Materials Park

  24. Tian WH, Ohishi K, Nemoto M (2001) Acta Metallurgica Sinica (English Letters) 14:313–318

    CAS  Google Scholar 

  25. Han CS (2007) Korean J Mater Res 17:420

    Article  CAS  Google Scholar 

  26. Oh-ishi K, Horita Z, Nemoto M (1997) Mater Trans JIM 38:99

    CAS  Google Scholar 

  27. Oh-ishi K, Nemoto M (1997) J Jpn Inst Met 61:282

    CAS  Google Scholar 

  28. Oh-ishi K, Horita Z, Nemoto M (1997) Mater Sci Eng A 239–240:472

    Google Scholar 

  29. Porter DA, Easterling E, Sherif MY (2009) Phase Transformations in Metals and Alloys. CRC Press, Boca Raton, pp 100–104

    Google Scholar 

  30. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  31. Wagner C (1961) Electrochemistry 65:581

    CAS  Google Scholar 

  32. Ardell AJ, Ozolins V (2005) Nat Mater 4:309

    Article  CAS  Google Scholar 

  33. Polvani RS, Tzeng WS, Strutt PR (1976) Metall Trans A 7:33–40

    Article  Google Scholar 

  34. Strutt PR, Kear BH (1985) Proc Mater Res Soc 39:279

    Article  CAS  Google Scholar 

  35. Thomason PF (1971) Int J Fract Mech 7:409

    Google Scholar 

  36. Tabor D (1948) Proc R Soc Lond A 192:247

    Article  Google Scholar 

  37. J. E. Hilliard, Spinodal Decomposition, Phase Transformations (1970) ASM

  38. Cahn JW (1963) Acta Metall 11:1275

    Article  CAS  Google Scholar 

  39. Ghista DN, Nix WD (1969) Mater Sci Eng 3:293

    Article  Google Scholar 

  40. Kato M (1981) Acta Metall 29:79

    Article  Google Scholar 

  41. Ardell AJ (1985) Precipitation Hardening. Metall Trans A16:2131

    Google Scholar 

  42. Dahlgren SD (1977) Metall Mater Trans A8:347

    Google Scholar 

  43. Kato M, Mori T, Schwartz LH (1980) Acta Metall 28:285

    Article  CAS  Google Scholar 

  44. Harmouche MR, Wolfenden A (1986) Mater Sci Eng 84:35

    Article  CAS  Google Scholar 

  45. Harmouche MR, Wolfenden A (1987) J Test Eval 15:101

    Article  CAS  Google Scholar 

  46. Harmouche MR, Wolfenden A (1984) Proc MRS 39:343

    Article  Google Scholar 

  47. Wu X, Baker I, Wu H, Miller MK, More KL, Bei H (2013) Intermetallics 32:413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences grant DE-FG02-07ER46392 (X. W and I. B). Research was supported ORNL’s ShaRE User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (M. K. M. and K. L. M.). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 (Z. C. and S. C.). The authors gratefully acknowledge K. F. Russell for technical assistance. Prof. Paul Munroe of the University of New South Wales is thanked for the electron probe microanalyzer measurements. We would also like to thanks the reviewers for their numerous useful comments. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing official policies, either expressed or implied of the DOE or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Baker, I., Miller, M.K. et al. Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30. Part I: Microstructure. J Mater Sci 48, 7435–7445 (2013). https://doi.org/10.1007/s10853-013-7558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7558-4

Keywords

Navigation