Skip to main content
Log in

Surface wrinkling: the phenomenon causing bees in bitumen

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The so called “bee phenomenon” in bitumen has been investigated by means of AFM quantitative nanomechanical property mapping. Bees are a phenomenon that can be observed by topography measurements using AFM. The characteristic “bee” appearance comes from regions with alternating higher and lower bands in the surface topography of bitumen, which are surrounded by a flat area. The proposed mechanism for bee formation is phase separation and differential contraction during cooling from melt temperatures leading to wrinkling due to differences in the elastic modulus of the material phases. Using a laminate wrinkling model, the thickness of the bee laminate was calculated from the wavelengths and Young’s moduli of the bee laminate and the matrix. It was found to vary between 70 and 140 nm for the five bitumen samples that contained significant amounts of wax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carambassis A, Jonker LC, Attard P, Rutland MW (1998) Phys Rev Lett 80:5357

    Google Scholar 

  2. Chung JY, Nolte AJ, Stafford CM (2011) Adv Mater 23:349

  3. de Moraes MB, Pereira RB, Simao RA, Leite LFM (2010) J Microsc 239:46

  4. Derjaguin B, Muller V, Toporov YP (1975) J Colloid Interface Sci 53:314

    Google Scholar 

  5. Dourado ER, Simao RA, Leite LFM (2011) J Microsc 245:118

    Google Scholar 

  6. Fantner GE, Oroudjev E, Schitter G, Goldie LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma HG, Hansma PK (2006) Biophys J 15:1411

  7. Hansson PM, Swerin A, Schoelkopf J, Gane PA, Thormann E (2012) Langmuir 28:8026

    Google Scholar 

  8. Huang YH (ed) (2004) Pavement analysis and design. Pearson Prentice Hall, Upper Saddle River, NJ, USA

  9. Hutter LJ, Bechhoefer J (1993) Rev Sci Instrum 64:1868

    Google Scholar 

  10. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press Inc, London

    Google Scholar 

  11. Kané M, Djabourov M, Volle J.‐L, Lechaire G, Frebourg G (2003) Fuel 82:127

    Google Scholar 

  12. Loeber L, Sutton O, Morel J, Valleton J.‐M, Muller G (1996) J Microsc 182:32

  13. Longchamp P, Hartel RW (2004) Eur J Lipid Sci Technol 106:241

    Google Scholar 

  14. Lu X, Kalman B, Redelius P (2008) Fuel 87:1543

    Google Scholar 

  15. Lu X, Langton M, Olofsson P, Redelius P (2005) J Mater Sci 40:1893

    Google Scholar 

  16. Lu X, Redelius P (2007) Constr Build Mater 21:1961

  17. Lyne ÅL, Wallqvist V, Birgisson B (2013) Fuel (accepted)

  18. Masson J-F, Leblond V, Margeson J, Bundalo‐Perc S (2006) J Microsc 221:17

    Google Scholar 

  19. Meredith JC, Karim A, Amis EJ (2002) Mater Res Soc Bull 27:330

    Google Scholar 

  20. Muller V, Derjaguin B, Toporov YP (1983) Colloids Surf 7:251

  21. Musser BJ, Kilpatrik PK (1998) Energy Fuels 12:715

    Article  CAS  Google Scholar 

  22. Pittenger B, Erina N, Su C (2010) Quantitative mechanical property mapping at the nanoscale with peakforce QNM. Veeco Instruments Inc

  23. Redelius PG (2006) Road Mater Pavement Des 10(supp 1):143

    Article  Google Scholar 

  24. Schmets A, Kringos N, Pauli T, Redelius P, Scarpas T (2010) Int J Pavement Eng 11(6):555

    Article  CAS  Google Scholar 

  25. Smith BL, Schaffer TE, Viani M, Thomson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Nature 399:761

    Google Scholar 

  26. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, Vanlandingham MR, Kim H‐C, Volksen W, Miller RD, Simonyi EE (2004) Nat Mater 3:545

  27. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Lett Nat 414:773

  28. Thormann E, Mizuno H, Jansson K, Hedin N, Fernández MS, Arias JL, Rutland MW, Pai RK, Bergström L (2012) Nanoscale 4:3910

    Google Scholar 

  29. Wallqvist V, Claesson PM, Swerin A, Schoelkopf J, Gane PA (2006) Colloids Surf A 277:183

    Google Scholar 

  30. Wallqvist V, Claesson PM, Swerin A, Schoelkopf J, Gane PA (2007) Langmuir 23(8):4248

    Google Scholar 

  31. Wallqvist V, Claesson PM, Swerin A, Östlund C, Schoelkopf J, Gane PA (2009) Langmuir 25(16):9197

    Google Scholar 

Download references

Acknowledgements

Fundings from BVFF, SBUF, and from the Research Institutes of Sweden (RISE Holding AB) are gratefully acknowledged. The authors thank Thorsten Nordgren at the Swedish Transport Administration for providing the bitumen samples, and Björn Kalman, VTI, for providing the wax contents. Måns Collin and Per Redelius are thanked for many valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åsa Laurell Lyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyne, Å.L., Wallqvist, V., Rutland, M.W. et al. Surface wrinkling: the phenomenon causing bees in bitumen. J Mater Sci 48, 6970–6976 (2013). https://doi.org/10.1007/s10853-013-7505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7505-4

Keywords

Navigation