Skip to main content
Log in

Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol

Journal of Materials Science Aims and scope Submit manuscript

Abstract

There is uncertainty concerning the potential toxicity of zinc oxide (ZnO) nanoparticles, which may be attributed in part to a lack of understanding with regard to the physiochemical properties of the nanoparticles used in toxicological investigations. This paper reports the synthesis of a ZnO nanopowder by flame spray pyrolysis and demonstrates that the typically employed characterisation techniques such as specific surface area measurement and X-ray diffraction provide insufficient information on the sample, especially if it is intended for use in toxicity studies. Instead, a more elaborate characterisation protocol is proposed that includes particle morphology as well as detailed compositional analysis of the nanoparticle surface. Detailed transmission electron microscopy analysis illustrated the polydispersity within the sample: particles were elongated in the c-crystallographic direction, with average Ferret length ~23 nm and Ferret width ~14 nm. Dynamic light scattering (0.1 w/v% in deionised water, pH 7.4) revealed the particles were agglomerated with a modal secondary particle size of ~1.5 μm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated the presence of carbonate and hydroxide impurities on the surface of the ZnO nanoparticles and an increase of such impurities was observed as the sample was aged, which might influence the nanoparticle dissolution and/or cellular uptake behaviour. These data will be utilised, in order to facilitate the interpretation and understanding of results from toxicological investigations using in vitro cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Johnson JC, Knutsen KP, Yan H, Law M, Zhang Y, Yang P, Saykally RJ (2004) Nano Lett 4(2):197. doi:10.1021/nl034780w

    Article  CAS  Google Scholar 

  2. Zhang L, Jiang Y, Ding Y, Povey M, York D (2006) J Nanopart Res 9(3):479. doi:10.1007/s11051-006-9150-1

    Article  Google Scholar 

  3. Padmavathy N, Vijayaraghavan R (2008) Sci Technol Adv Mater 9(3):035004. doi:10.1088/1468-6996/9/3/035004

    Article  Google Scholar 

  4. Yamamoto O (2001) Int J Inorg Mater 3(7):643. doi:10.1016/S1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  5. Mitchnick M, Fairhurst D, Pinell S (1999) J Am Acad Dermatol 40(1):85. doi:10.1016/S0190-9622(99)70532-3

    Article  CAS  Google Scholar 

  6. Gustavsson Gonzalez H, Farbrot A, Larko O (2002) Clin Exp Dermatol 27(8):691. doi:10.1046/j.1365-2230.2002.01095.x

    Article  CAS  Google Scholar 

  7. Liufu S, Xiao H, Li Y (2005) Mater Lett 59(27):3494. doi:10.1016/j.matlet.2005.06.020

    Article  CAS  Google Scholar 

  8. Shen L, Bao N, Yanagisawa K, Domen K, Gupta A, Grimes CA (2006) Nanotechnology 17(20):5117. doi:10.1088/0957-4484/17/20/013

    Article  CAS  Google Scholar 

  9. Wang L, Muhammed M (1999) J Mater Chem 9(11):2871. doi:10.1039/a907098b

    Article  CAS  Google Scholar 

  10. Wu R, Xie C, Xia H, Hu J, Wang A (2000) J Cryst Growth 217(3):274. doi:10.1016/S0022-0248(00)00506-6

    Article  CAS  Google Scholar 

  11. Suchanek WL (2009) J Cryst Growth 312(1):100. doi:10.1016/j.jcrysgro.2009.09.051

    Article  CAS  Google Scholar 

  12. Baruah S, Dutta J (2009) Sci Technol Adv Mater 10(1):013001. doi:10.1088/1468-6996/10/1/013001

    Article  Google Scholar 

  13. Meulenkamp EA (1998) J Phys Chem B 102(29):5566. doi:10.1021/jp980730h

    Article  CAS  Google Scholar 

  14. Mondelaers D, Vanhoyland G, Van Den Rul H, D’haen J, Van Bael M, Mullens J, Van Poucke L (2002) Mater Res Bull 37(5):901

    Article  CAS  Google Scholar 

  15. Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) J Mater Res 10(1):77. doi:10.1557/JMR.1995.0077

    Article  Google Scholar 

  16. Hsieh C-H (2007) J Chin Chem Soc 54:31

    CAS  Google Scholar 

  17. Auer G, Woditsch P, Westerhaus K, Kischkewitz J, Griebler W-D, De Liedekerke M (2009) Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley, Weinheim, p 286

    Google Scholar 

  18. Teoh WY, Amal R, Mädler L (2010) Nanoscale 2(8):1324. doi:10.1039/c0nr00017e

    Article  CAS  Google Scholar 

  19. Jensen JR, Johannessen T, Livbjerg H (2000) J Aerosol Sci 31(1):216

    Article  Google Scholar 

  20. Matsoukas T, Friedlander SK (1991) J Colloid Interface Sci 146(2):495. doi:10.1016/0021-9797(91)90213-R

    Article  CAS  Google Scholar 

  21. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SECG et al (2009) Regul Toxicol Pharm 53(1):52. doi:10.1016/j.yrtph.2008.10.008

    Article  CAS  Google Scholar 

  22. Mädler L, Kammler H, Mueller R, SE P (2002) J Aerosol Sci 33:369

    Article  Google Scholar 

  23. Strobel R, Baiker A, Pratsinis SE (2006) Adv Powder Technol 17(5):457. doi:10.1163/156855206778440525

    Article  CAS  Google Scholar 

  24. Athanassiou EK, Grass RN, Stark WJ (2010) Aerosol Sci Technol 44(2):161. doi:10.1080/02786820903449665

    Article  CAS  Google Scholar 

  25. Marshall BS, Telford I, Wood R (1971) Analyst 96(145):569

    Article  CAS  Google Scholar 

  26. Carroz JW, Odencrantz FK, Finnegan WG, Drehmel DC (1980) Am Ind Hyg Assoc J 41(2):77. doi:10.1080/15298668091424401

    Article  CAS  Google Scholar 

  27. Tani T, Mädler L, Pratsinis S (2002) J Nanopart Res 4:337

    Google Scholar 

  28. Strobel R, Pratsinis SE (2011) Phys Chem Chem Phys 13(20):9246. doi:10.1039/c0cp01416h

    Article  CAS  Google Scholar 

  29. Liewhiran C, Phanichphant S (2007) Sensors 7(2):185. doi:10.3390/s7020185

    Article  CAS  Google Scholar 

  30. Height MJ, Mädler L, Pratsinis SE, Krumeich F (2006) Chem Mater 18(2):572. doi:10.1021/cm052163y

    Article  CAS  Google Scholar 

  31. Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Langmuir 27(10):6059. doi:10.1021/la200570n

    Article  CAS  Google Scholar 

  32. Dange C, Phan TNT, André V, Rieger J, Persello J, Foissy A (2007) J Colloid Interface Sci 315(1):107. doi:10.1016/j.jcis.2007.03.068

    Article  CAS  Google Scholar 

  33. Degen A, Kosec M (2000) J Eur Ceram Soc 20(6):667

    Article  CAS  Google Scholar 

  34. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI et al (2008) ACS Nano 2(10):2121. doi:10.1021/nn800511k

    Article  CAS  Google Scholar 

  35. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A et al (2010) ACS Nano 4(1):15. doi:10.1021/nn901503q

    Article  CAS  Google Scholar 

  36. Vandebriel R, De Jong W (2012) Nanotechnol Sci Appl 61. doi:10.2147/NSA.S23932

  37. Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Toxicol Lett 199(3):389. doi:10.1016/j.toxlet.2010.10.003

    Article  CAS  Google Scholar 

  38. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Appl Phys Lett 90(213902):2139021. doi:10.1063/1.2742324

    Google Scholar 

  39. Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Particle Fibre Toxicol 8(1):10. doi:10.1186/1743-8977-8-10

    Article  Google Scholar 

  40. Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC et al (2010) J R Soc Interface 7(Suppl 3):S331. doi:10.1098/rsif.2010.0068.focus

    Article  CAS  Google Scholar 

  41. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanotechnology 20(11):115101. doi:10.1088/0957-4484/20/11/115101

    Article  Google Scholar 

  42. Hsiao I-L, Huang Y-J (2011) Sci Total Environ 409(7):1219. doi:10.1016/j.scitotenv.2010.12.033

    Article  CAS  Google Scholar 

  43. Müller KH, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP et al (2010) ACS Nano 4(11):6767. doi:10.1021/nn101192z

    Article  Google Scholar 

  44. Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) Chem Res Toxicol 23(4):733. doi:10.1021/tx900203v

    Article  CAS  Google Scholar 

  45. Pan Z, Tao J, Zhu Y, Huang J-F, Paranthaman MP (2010) Chem Mater 22(1):149. doi:10.1021/cm902734e

    Article  CAS  Google Scholar 

  46. Xu R, Di Guida OA (2003) Powder Technol 132(2–3):145–153. doi:10.1016/S0032-5910(03)00048-2

    Article  Google Scholar 

  47. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, London

    Google Scholar 

  48. Malvern Instruments (2000) Dynamic light scattering: an introduction in 30 minutes. Retrieved January 14, 2013, from http://www.malvern.com/common/downloads/campaign/MRK656-01.pdf

  49. Bang J, Yang H, Holloway PH (2006) Nanotechnology 17(4):973. doi:10.1088/0957-4484/17/4/022

    Article  CAS  Google Scholar 

  50. Wahab R, Ansari SG, Kim YS, Song M, Shin H-S (2009) Appl Surf Sci 255(9):4891. doi:10.1016/j.apsusc.2008.12.037

    Article  CAS  Google Scholar 

  51. Hondow N, Brydson R, Wang P, Holton MD, Brown MR, Rees P, Summers HD et al (2012) J Nanopart Res 14(7). doi:10.1007/s11051-012-0977-3

  52. Umar A, Rahman MM, Vaseem M, Hahn Y-B (2009) Electrochem Commun 11(1):118. doi:10.1016/j.elecom.2008.10.046

    Article  CAS  Google Scholar 

  53. Li Y, Wu K, Zhitomirsky I (2010) Colloids Surf A 356(1–3):63. doi:10.1016/j.colsurfa.2009.12.037

    Article  CAS  Google Scholar 

  54. Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, Chichester

    Google Scholar 

  55. Klimm D, Schulz D, Ganschow S (2011) Compd Semicond Sci Technol 3:302

    Article  CAS  Google Scholar 

  56. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Environ Toxicol Chem 31(1):93. doi:10.1002/etc.708

    Article  CAS  Google Scholar 

  57. Gröhn AJ, Pratsinis SE, Wegner K (2012) Chem Eng J 191:491. doi:10.1016/j.cej.2012.02.093

    Article  Google Scholar 

Download references

Acknowledgements

Research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 229244 (ENNSATOX). K. Wegner gratefully acknowledges financial support by the European Research Council (ERC project “FlameNanoManufacture”, contract #247283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, R., Brown, A.P., Brydson, R. et al. Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol. J Mater Sci 48, 6393–6403 (2013). https://doi.org/10.1007/s10853-013-7439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7439-x

Keywords

Navigation