Skip to main content
Log in

Structural and composition analysis of Apex™ and Foturan™ photodefinable glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Little is known about photostructurable glasses when compared to quartz and the other glass families. This article investigates optical and thermal behavior of the two commercially produced Apex™ and Foturan™ photosensitive glasses in relation to their composition. A composition analysis is performed on the two glasses using Rutherford backscattering spectrometry, and UV spectroscopy. Cerium and silver were found to exist at higher concentrations in Foturan than in Apex glass. Difference in transmission in the 240–340 nm window is mainly attributed to the different concentrations of cerium and silver in the glasses. Infrared transmission in the range of 2.7–5.0 μm is improved following an annealing process. Structural stability over a different range of temperatures in the two photosensitive glasses is investigated, and is attributed to the silica content at the expense of lithium oxide. Raman spectroscopy shows that the UV-exposed-then-baked photosensitive glass, results in the formation of a uniform crystalline-phase lithium metasilicate with a preponderantly Q2 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dietrich T, Ehrfeld W, Lacher M, Krämer M, Speit B (1996) Microelectron Eng 30:497

    Article  CAS  Google Scholar 

  2. Cho Y-R, Oh J-Y, Kim H-S, Jeong H-S (1999) Mater Sci Eng 64:221

    Google Scholar 

  3. Freitag A, Vogel D, Scholz R, Dietrich TR (2001) J Assoc Lab Autom 6:45

    Article  Google Scholar 

  4. Flemming J, Buckley C, Schmidt C (2008) Compositions and methods to fabricate a photoactive substrate suitable for shaped structures. US Patent 20080248250

  5. Bhardwaj V, Simova E, Corkum P, Rayner D, Hnatovsky C, Taylor R, Schreder B, Kluge M, Zimmer J (2005) J Appl Phys 97:083102

    Article  Google Scholar 

  6. Livingston F, Adams P, Helvajian H (2005) Appl Surf Sci 247:526

    Article  CAS  Google Scholar 

  7. Livingston F, Helvajian H (2005) Appl Phys A 81:1569

    Article  CAS  Google Scholar 

  8. Tantawi KH, Oates J, Kamali-Sarvestani R, Bergquist N, Williams JD (2011) J Micromech Microeng 21:017001

    Article  Google Scholar 

  9. Williams J, Schmidt C, Serkland D (2010) Appl Phys A 99:777

    Article  CAS  Google Scholar 

  10. Cheng Y, Tsai HL, Sugioka K, Midorikawa K (2006) Appl Phys A 85:11

    Article  CAS  Google Scholar 

  11. Tantawi K, Gaillard W, Helton J, Waddell E, Mirov S, Fedorov V, Williams J (2013) Microsyst Technol 19:173

    Article  CAS  Google Scholar 

  12. Gleitsmann T, Stegemann B, Bernhardt T (2004) Appl Phys Lett 84:4050

    Article  CAS  Google Scholar 

  13. Brandily-Anne M-L, Lumeau J, Glebova L, Glebov LB (2010) J Non Cryst Solids 356:2337

    Article  CAS  Google Scholar 

  14. Paul A, Mulholland M, Zaman M (1976) J Mater Sci 11:2082. doi:10.1007/BF02403358

    Article  CAS  Google Scholar 

  15. Pace C, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411

    Article  CAS  Google Scholar 

  16. Goldfarb AR, Saidel L, Mosovich E (1951) J Biol Chem 193:397

    CAS  Google Scholar 

  17. Aitken A, Learmonth M (1996) In: Walker JM (ed) The protein protocols handbook: protein determination by UV absorption, 2nd edn. Humana Press, New Jersey, p 3

    Chapter  Google Scholar 

  18. Lua J, Bravo-Suáreza J, Takahashia A, Harutab M, Oyama ST (2005) J Catal 232(1):85

    Article  Google Scholar 

  19. Fujita K, Takahara Y, Chikaura Y (2008) Mater Trans 49:372

    Article  CAS  Google Scholar 

  20. Klyuev VP, Pevzner B (2002) Glass Phys Chem 28:207

    Article  CAS  Google Scholar 

  21. Serra J, Gonzalez P, Liste S, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M (2002) J Mater Sci Mater Med 13:1221

    Article  CAS  Google Scholar 

  22. Araujo R (1997) J Non Cryst Solids 222:25

    CAS  Google Scholar 

  23. Efimov A, Pogareva V, Shashkin A (2003) J Non Cryst Solids 332:93

    Article  CAS  Google Scholar 

  24. Doremus RH (1994) Glass science, 2nd edn. Wiley, New York

    Google Scholar 

  25. Ruchkin ED, Sokolova MN, Batsanov SS (1967) J Struct Chem 8:410

    Article  Google Scholar 

  26. Kitson R, Griffith N (1952) Anal Chem 24:334

    Article  CAS  Google Scholar 

  27. Yan B, Kumaravel G, Anjaria H, Wu A, Petter R, Jewell C, Wareing J (1995) J Org Chem 60:5736

    Article  CAS  Google Scholar 

  28. Clayden NJ, Esposito S, Jayasooriya UA, Sprunt J, Pernice P (1998) J Non Cryst Solids 224:50

    Article  CAS  Google Scholar 

  29. Tatsumisago M, Minami T, Umesaki N, Iwamato N (1986) Chem Lett 15:1371

    Article  Google Scholar 

  30. Khafagy AH, El-Adawy AA, Higazy AA, El-Rabaie S, Eid AS (2008) J Non Cryst Solids 354:1460

    Article  CAS  Google Scholar 

  31. Reynoso VCS, Yukimitu K, Nagami T, Carvalho CL, Moraes JCS, Araujo EB (2003) J Phys Chem Solids 64:27

    Article  CAS  Google Scholar 

  32. Barbieri L, Leonelli C, Manfredini T, Siligardi C, Corradi AB (1997) J Am Ceram Soc 80:3077

    Article  CAS  Google Scholar 

  33. Evans A, Rupp JL, Gauckler LJ (2012) J Eur Ceram Soc 32:203

    Article  CAS  Google Scholar 

  34. Wallace KE, Hill RG, Pembroke JT, Brown CJ, Hatton PV (1999) J Mater Sci Mater Med 10:697

    Article  CAS  Google Scholar 

  35. Waterhouse G, Bowmaker G, Metson J (2001) Phys Chem Chem Phys 3:3838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Charles Lukehart at Vanderbilt University for allowing us to use the XRD equipment at his lab. We are also indebted to Dr. Claudiu Muntele at Alabama A&M University for running the Rutherford Backscattering experiment and Mr. Greg Blubaugh at Mettler-Toledo, Inc. for running the Differential Scanning Calorimetry for our use. This research was sponsored by the Albama Graduate Research Scholars Program (GRSP), and supported by the Office of the Vice President for Research in UAHuntsville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tantawi, K.H., Waddel, E. & Williams, J.D. Structural and composition analysis of Apex™ and Foturan™ photodefinable glasses. J Mater Sci 48, 5316–5323 (2013). https://doi.org/10.1007/s10853-013-7326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7326-5

Keywords

Navigation