Skip to main content
Log in

Electrochemical template synthesis of protein-imprinted magnetic polymer microrods

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel method for the electrochemical template synthesis of surface-imprinted magnetic polymer microrods for protein recognition is proposed. The polymer was electrodeposited into sacrificial cylindrical microreactors, the internal walls of which were previously modified with a target model protein, avidin, by simple physisorption. The electropolymerization was performed from a mixture of 3,4-ethylenedioxythiophene, poly(styrenesulfonate) (PSS), and PSS-coated superparamagnetic nanoparticles resulting in the formation of inherently electroconductive polymers confined to the volume of the microreactor. Here we show that: (i) the template synthesis within cylindrical microreactors results in polymer rods with dimensions matching that of the reactor, (ii) the incorporation of superparamagnetic particles induces magnetic properties that allow for efficient collection and manipulation of the microrods released from the microreactors in magnetic field even from dilute solution, and (iii) the protein coating on the internal walls of the microreactors is shown to generate molecular imprints on the surface of the polymeric rods. This latter property was demonstrated by comparative binding experiments of a fluorescent avidin derivative to the surface-imprinted and non-imprinted magnetic polymer microrods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sellergren B (ed) (2001) Molecularly imprinted polymers: Man-made mimics of antibodies and their applications in analytical chemistry. Techniques and Instrumentation in Analytical Chemistry, vol 23. Elsevier, Amsterdam

  2. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2003) Molecular imprinting from fundamentals to applications. Wiley, Weinheim

    Google Scholar 

  3. Yan M, Ramström O (eds) (2005) Molecularly imprinted materials: science and technology. Marcel Dekker, New York

    Google Scholar 

  4. Haupt K (ed) (2012) Molecular imprinting. topics in current chemistry, vol 325. Springer, New York

  5. Pichon V (2007) J Chromatogr A 1152:41. doi:10.1016/j.chroma.2007.02.109

    Article  CAS  Google Scholar 

  6. Toth B, Horvai G (2012) Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs. In: Haupt K (ed) Molecular imprinting. Topics in current chemistry, vol 325. pp 267. doi:10.1007/128_2010_100

  7. Resmini M (2012) Anal Bioanal Chem 402:3021. doi:10.1007/s00216-011-5671-2

    Article  CAS  Google Scholar 

  8. Holthoff EL, Bright FV (2007) Anal Chim Acta 594:147. doi:10.1016/j.aca.2007.05.044

    Article  CAS  Google Scholar 

  9. Moreno-Bondi MC, Navarro-Villoslada F, Benito-Pena E, Urraca JL (2008) Curr Anal Chem 4:316. doi:10.2174/157341108785914925

    Article  CAS  Google Scholar 

  10. Suryanarayanan V, Wu CT, Ho KC (2010) Electroanalysis 22:1795. doi:10.1002/elan.200900616

    Article  CAS  Google Scholar 

  11. Kryscio DR, Peppas NA (2012) Acta Biomater 8:461. doi:10.1016/j.actbio.2011.11.005

    Article  CAS  Google Scholar 

  12. Chen LG, Li B (2012) Anal Methods 4:2613. doi:10.1039/c2ay25354b

    Article  CAS  Google Scholar 

  13. Ansell RJ, Mosbach K (1998) Analyst 123:1611. doi:10.1039/A801903G

    Article  CAS  Google Scholar 

  14. Chen LG, Liu J, Zeng QL, Wang H, Yu AM, Zhang HQ, Ding L (2009) J Chromatogr A 1216:3710. doi:10.1016/j.chroma.2009.02.044

    Article  CAS  Google Scholar 

  15. Chen LG, Zhang XP, Sun L, Xu Y, Zeng QL, Wang H, Xu HY, Yu AM, Zhang HQ, Ding L (2009) J Agric Food Chem 57:10073. doi:10.1021/jf902257d

    Article  CAS  Google Scholar 

  16. Chen LG, Zhang XP, Xu Y, Du XB, Sun X, Sun L, Wang H, Zhao Q, Yu AM, Zhang HQ, Ding L (2010) Anal Chim Acta 662:31. doi:10.1016/j.aca.2010.01.001

    Article  CAS  Google Scholar 

  17. Gu XH, Xu R, Yuan GL, Lu H, Gu BR, Xie HP (2010) Anal Chim Acta 675:64. doi:10.1016/j.aca.2010.06.033

    Article  CAS  Google Scholar 

  18. Guo WL, Hu W, Pan JM, Zhou HC, Guan W, Wang X, Dai JD, Xu LC (2011) Chem Eng J (Lausanne) 171:603. doi:10.1016/j.cej.2011.04.036

    CAS  Google Scholar 

  19. Ji YS, Yin JJ, Xu ZG, Zhao CD, Huang HY, Zhang HX, Wang CM (2009) Anal Bioanal Chem 395:1125. doi:10.1007/s00216-009-3020-5

    Article  CAS  Google Scholar 

  20. Hoogvliet JC, Dijksma M, Kamp B, van Bennekom WP (2000) Anal Chem 72:2016. doi:10.1021/ac991215y

    Article  CAS  Google Scholar 

  21. Lu SL, Cheng GX, Zhang HG, Pang XS (2006) J Appl Polym Sci 99:3241. doi:10.1002/app.22997

    Article  CAS  Google Scholar 

  22. Pan JM, Hu W, Dai XH, Guan W, Zou XH, Wang X, Huo PW, Yan YS (2011) J Mater Chem 21:15741. doi:10.1039/c1jm12099a

    Article  CAS  Google Scholar 

  23. Pan JM, Yao H, Xu LC, Ou HX, Huo PW, Li XX, Yan YS (2011) J Phys Chem C 115:5440. doi:10.1021/jp111120x

    Article  CAS  Google Scholar 

  24. Wang XB, Ding XB, Zheng ZH, Hu XH, Cheng X, Peng YX (2006) Macromol Rapid Commun 27:1180. doi:10.1002/marc.200600211

    Article  CAS  Google Scholar 

  25. Zhang XP, Chen LG, Xu Y, Wang H, Zeng QL, Zhao Q, Ren NQ, Ding L (2010) J Chromatogr, B: Anal Technol Biomed Life Sci 878:3421. doi:10.1016/j.jchromb.2010.10.030

    Article  CAS  Google Scholar 

  26. Zhang Y, Liu RJ, Hu YL, Li G (2009) Anal Chem 81:967. doi:10.1021/ac8018262

    Article  CAS  Google Scholar 

  27. Medina-Castillo AL, Mistlberger G, Fernandez-Sanchez JF, Segura-Carretero A, Klimant I, Fernandez-Gutierrez A (2010) Macromolecules 43:55. doi:10.1021/ma902095s

    Article  CAS  Google Scholar 

  28. Gai QQ, Qu F, Liu ZJ, Dai RJ, Zhang YK (2010) J Chromatogr A 1217:5035. doi:10.1016/j.chroma.2010.06.001

    Article  CAS  Google Scholar 

  29. Gai QQ, Qu F, Zhang T, Zhang YK (2011) J Chromatogr A 1218:3489. doi:10.1016/j.chroma.2011.03.069

    Article  CAS  Google Scholar 

  30. Kan XW, Zhao Q, Shao DL, Geng Z, Wang ZL, Zhu JJ (2010) J Phys Chem B 114:3999. doi:10.1021/jp910060c

    Article  CAS  Google Scholar 

  31. Li L, He XW, Chen LX, Zhang YK (2009) Chem–Asian J 4:286. doi:10.1002/asia.200800300

  32. Li L, He XW, Chen LX, Zhang YK (2009) Sci China. Ser B: Chem 52:1402. doi:10.1007/s11426-009-0182-0

    Article  CAS  Google Scholar 

  33. Liu JZ, Wang WZ, Xie YF, Huang YY, Liu YL, Liu XJ, Zhao R, Liu GQ, Chen Y (2011) J Mater Chem 21:9232. doi:10.1039/c1jm10227c

    Article  CAS  Google Scholar 

  34. Qu P, Lei JP, Zhang L, Ouyang RZ, Ju HX (2010) J Chromatogr A 1217:6115. doi:10.1016/j.chroma.2010.07.063

    Article  CAS  Google Scholar 

  35. Wang X, Wang L, He X, Zhang Y, Chen L (2009) Talanta 78:327. doi:10.1016/j.talanta.2008.11.024

    Article  CAS  Google Scholar 

  36. Zhou WH, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR (2010) J Mater Chem 20:880. doi:10.1039/b916619j

    Article  CAS  Google Scholar 

  37. Gao RX, Kong X, Wang X, He XW, Chen LX, Zhang YK (2011) J Mater Chem 21:17863. doi:10.1039/c1jm12414e

    Article  CAS  Google Scholar 

  38. Lautner G, Kaev J, Reut J, Opik A, Rappich J, Syritski V, Gyurcsanyi RE (2011) Adv Funct Mater 21:591. doi:10.1002/adfm.201001753

    Article  CAS  Google Scholar 

  39. Menaker A, Syritski V, Reut J, Opik A, Horvath V, Gyurcsanyi RE (2009) Adv Mater 21:2271. doi:10.1002/adma.200803597

    Article  CAS  Google Scholar 

  40. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481. doi:10.1002/(SICI)1521-4095(200004)12:7<481:AID-ADMA481>3.0.CO;2-C

    Article  CAS  Google Scholar 

  41. Martin CR (1994) Science 266:1961. doi:10.1126/science.266.5193.1961

    Article  CAS  Google Scholar 

  42. Sedlak M (2001) In: Radeva T (ed) Physical chemistry of polyelectrolytes. Surfactant science series, vol 99. Marcel Dekker New York pp 1

  43. Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Eur Polym J 47:542. doi:10.1016/j.eurpolymj.2010.11.006

    Article  CAS  Google Scholar 

  44. Nematollahzadeh A, Sun W, Aureliano CSA, Lutkemeyer D, Stute J, Abdekhodaie MJ, Shojaei A, Sellergren B (2011) Angew Chem. Int Ed 50:495. doi:10.1002/anie.201004774

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” project (TÁMOP-4.2.1/B-09/1/KMR-2010–0002). This work was supported by the European Commission (MRTN-CT-2006-033873) and Hungarian OTKA under Grant Nos. PD75615, K104724, and CNK80991. The authors would like to thank Dr. László Ferenc Kiss for the assistance during the magnetization measurements and Prof. László Bezúr for the atomic absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Horváth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceolin, G., Orbán, Á., Kocsis, V. et al. Electrochemical template synthesis of protein-imprinted magnetic polymer microrods. J Mater Sci 48, 5209–5218 (2013). https://doi.org/10.1007/s10853-013-7309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7309-6

Keywords

Navigation