Skip to main content
Log in

Theoretical prediction of structural parameters, band-gap energies, and mixing enthalpies of Sc1−x In x As alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Structural parameters, band-gap energies, and mixing enthalpies of Sc1−x In x As alloys were calculated using the full-potential linearized–augmented plane wave method. These calculations are based on density functional theory, within local density approximation, and generalized gradient approximation for the exchange and correlation potential. Given that the binary precursor compounds ScAs and InAs crystallize in rock-salt and zinc-blende, respectively, we made calculations for the ternary alloys in these two phases. The effect of composition x on structural parameters, band-gap energies, and mixing enthalpies was analyzed for x = 0, 0.25, 0.5, 0.75, 1. The effect of atomic composition on lattice constant, bulk modulus, and band-gap energy shows nonlinear dependence on concentration x. Deviations of the lattice constant from Vegard’s law and deviations of the bulk modulus and gap-energy from linear concentration dependence were found. We have found a metallic character for rock-salt Sc1−x In x As alloys, while the zinc-blende Sc1−x In x As alloys are semiconductors. Our results show that the band-gap undergoes a direct (\(X \rightarrow X\))-to-direct (\(\Upgamma\rightarrow \Upgamma\)) transition at a given indium composition. The physical origin of the band-gap bowing in zinc-blende Sc1−x In x As alloys was investigated. To study the thermodynamic stability of Sc1−x In x As alloys, a regular-solution model was used. This resulted in lower mixing enthalpies for zinc-blende Sc1−x In x As alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815

    Article  CAS  Google Scholar 

  2. Adachi S (2009) Properties of semiconductor alloys: group-IV, IIIV and II–VI semiconductors (Wiley series in materials for electronic and optoelectronic applications}. Wiley, West Sussex

    Google Scholar 

  3. Milnes AG, Polyakov AY (1993) Mater Sci Eng B 18:237

    Article  Google Scholar 

  4. Chow DH, Dunlap HL, Williamson W, Enquist S, Gilbert BK, Subramaniam S, Lei P-M, Bernstein GH (1996) IEEE Electron Device Lett 17:69

    Article  CAS  Google Scholar 

  5. Meyer JR et al (1998) IEE Proc 145:275

    Article  CAS  Google Scholar 

  6. Slavin JWJ, Zemlyanov D, Ivanisevic A (2009) Surf Sci 603:907

    Article  CAS  Google Scholar 

  7. Boehm G, Grau M, Dier O, Windhorn K, Roenneberg E, Rosskopf J, Shau R, Meyer R, Ortsiefer M, Amann M-C (2007) J Cryst Growth 301302:941

    Article  Google Scholar 

  8. Yim WM, Stofko EJ, Smith RT (1972) J Appl Phys 43:254

    Article  CAS  Google Scholar 

  9. Iga K, Kinoshita S (1996) Process technology for semiconductor lasers. Springer-Verlag, Berlin

    Book  Google Scholar 

  10. Quillec M (1996) Materials for optoelectronics. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  11. Mishra UK, Singh J (2008) Semiconductor device physics and design. Springer, Dordrecht

    Google Scholar 

  12. Su Y-K (1985) J Mater Sci Lett 4:1513

    Article  CAS  Google Scholar 

  13. Su Y-K, Wang J-H, Hung MP (1989) J Mater Sci 24:899

    Article  CAS  Google Scholar 

  14. Kunets VP, Morgan TA, Mazur YI, Dorogan VG, Lytvyn PM, Ware ME, Guzun D, Shultz JL, Salamo GJ (2008) J Appl Phys 104:103709

    Article  Google Scholar 

  15. Wu MY, Lei PH, Tsai CL, Yang CD, Huang YH, Ho WJ, Wu MC (2004) J Vac Sci Technol B 22:961

    Article  CAS  Google Scholar 

  16. Murphy ST, Chroneos A, Jiang C, Schwingenschlgl U, Grimes RW (2010) Phys Rev B 82:073201

    Article  Google Scholar 

  17. Ameri M, Boufadi F, Touia A, Faudil M, Hachemane D, Boudia K, Slamani A, Aze-Eddine A (2012) Mater Sci Appl 3:674

    Google Scholar 

  18. Yakimova R (1985) J Less Common Met 110:243

    Article  CAS  Google Scholar 

  19. Lilov SK, Yakimova RT (1983) Crystal Res Technol 18(11):1385

    Article  CAS  Google Scholar 

  20. Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Phys Rev Lett 65:353

    Article  CAS  Google Scholar 

  21. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k an augmented plane wave plus local orbital program for calculating crystal properties. Vienna University of Technology, Vienna

    Google Scholar 

  22. Hohenberg P, Kohn W (1964) Phys Rev 136:864

    Article  Google Scholar 

  23. Kohn W, Sham LJ (1965) Phys Rev 140:1163

    Article  Google Scholar 

  24. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  25. Perdew JP, Burke K, Emzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Engel E, Vosko SH (1993) Phys Rev B 47:13164

    Article  CAS  Google Scholar 

  27. Murnaghan FD (1944) Proc Natl Acad Sci USA 30(9):244

    Article  CAS  Google Scholar 

  28. Maachou A, Amrani B, Driz M (2007) Phys B 388:384

    Article  CAS  Google Scholar 

  29. Ahmed R, Hashemifar SJ, Akbarzadeh H, Ahmed M, Aleem F (2007) Comput Mater Sci 39:580

    Article  CAS  Google Scholar 

  30. Vegard L (1921) Z Phys 5:17

    Article  CAS  Google Scholar 

  31. Jobst B, Hommel D, Lunz U, Gerhard T, Landwehr G (1996) Appl Phys Lett 69:97

    Article  CAS  Google Scholar 

  32. Denton AR, Ashcroft NW (1991) Phys Rev A 43:3161

    Article  CAS  Google Scholar 

  33. Dufek P, Blaha P, Schwarz K (1994) Phys Rev B 50:7279

    Article  CAS  Google Scholar 

  34. Bernard JE, Zunger A (1987) Phys Rev B 36:3199

    Article  CAS  Google Scholar 

  35. Sargent W (1980) Table of periodic properties of the elements. Sargent-Welch Scientific, Skokie

    Google Scholar 

  36. Swalin RA (1961) Thermodynamics of solids. Wiley, New York

    Google Scholar 

  37. Ouendadji S, Ghemid S, Bouarissa N, Meradji H, Hassan FEH (2011) J Mater Sci 46:3855

    Article  CAS  Google Scholar 

  38. Sluiter MHF, Kawazoe Y (2002) Europhys Lett 57(4):526

    Article  CAS  Google Scholar 

  39. Hassan FEH, Breidi A, Ghemid S, Amrani B, Meradji H, Pages O (2010) J Alloys Compd 499:80

    Article  Google Scholar 

  40. Liu YQ, Ma DJ, Du Y (2010) J Alloys Compd 491:63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by DIDI-Universidad del Norte. The calculations reported in this paper were performed using the computing facilities of the HIPERLAB-cluster at the Universidad del Norte. The authors thank Carlos Abuchaibe Ferreira for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William López-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Pérez, W., Simon-Olivera, N. & González-Hernández, R. Theoretical prediction of structural parameters, band-gap energies, and mixing enthalpies of Sc1−x In x As alloys. J Mater Sci 48, 4899–4907 (2013). https://doi.org/10.1007/s10853-013-7270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7270-4

Keywords

Navigation