Skip to main content
Log in

Combined X-ray and neutron diffraction Rietveld refinement in iron-substituted nano-hydroxyapatite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Simultaneous Rietveld refinements of X-ray and neutron powder diffraction patterns were applied to study the effect of Fe substitution on the crystal structure properties of the Ca5−x Fe x (PO4)3OH system (0 ≤ x ≤ 0.3). From variations of the Ca(1) and Ca(2) site occupancies and modifications of interatomic distances with x, it is inferred that Fe substitutes at both crystallographic sites with a preference at the Ca(2) site. Such partiality is attributed to similar geometries of the sixfold coordinated Fe with the sevenfold coordinated Ca(2). The expected overall decrease of the lattice constants in the iron-substituted samples is followed by an increasing trend with x that is explained in terms of local lattice distortions. Hematite forms as a secondary phase starting at x = 0.1 up to 3.7 wt% for x = 0.3. Transmission electron microscopy reveals a nanosystem consisting of 15–65 nm rods and spheres, while hematite nanoparticles are distinguishable for x ≥ 0.1. A transition of the diamagnetic hydroxyapatite to paramagnetic Fe-hydroxyapatite was found from magnetic measurements, while the antiferromagnetic hematite develops hysteresis loops for x > 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Antonakos et al. paper under preparation.

References

  1. LeGeros RZ, LeGeros JP (1984) In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer-Verlag, Berlin/Heidelberg, p. 351

  2. Driessens FCM, Veerbeeck RMH (1990) Biominerals. CRC Press, Boca Raton

    Google Scholar 

  3. Skinner HCW (2000) EMU Notes Mineral 2:383

    Google Scholar 

  4. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Krager, Basel

    Google Scholar 

  5. Priest ND, Viver VD (1990) Trace metals and fluoride in bones and teeth. CRC Press, Boca Raton

    Google Scholar 

  6. Wopenka B, Pasteris JD (2005) Mater Sci Eng C 25:131

    Article  Google Scholar 

  7. Leventouri Th (2007) In: Kendall JA (ed) Biomaterials Research Advances. Nova Science Publishers, New York, p 145

    Google Scholar 

  8. Medeiros DM, Plattner A, Jennings D, Stoecker B (2002) J Nutr 132:3135

    CAS  Google Scholar 

  9. De Vernejoul MC, Pointillart A, Cywiner Golenzer C, Morieux C, Bielakoff J, Modrowski D, Miravet L (1984) Am J Pathol 116:377

    Google Scholar 

  10. Guggenbuhl P, Filmon R, Mabileau G, Basle MF, Chappard D (2008) Metab Clin Exp 57:903

    Article  CAS  Google Scholar 

  11. Okazaki M, Takajashi J (1997) Biomaterials 18:11

    Article  CAS  Google Scholar 

  12. Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) Nanotechnology 18:165601

    Article  Google Scholar 

  13. Low HR, Phothammachai N, Maignan A, Stewart GA, Bastow TJ, Ma LL, White TJ (2008) Inorg Chem 47:11774

    Article  CAS  Google Scholar 

  14. Khudolozhkin BO, Urusov VS, Kurash VV (1974) Geochem Int 11:748

    Google Scholar 

  15. Morissay R, Rodriguez-Lorenzo LM, Gross KA (2005) J Mater Sci Mater Med 16:387

    Article  Google Scholar 

  16. Jiang M, Terra J, Rossi AM, Morales MA, Baggio Saitovich EM, Ellis DE (2002) Phys Rev B 66:224107

    Article  Google Scholar 

  17. Li Y, Widodo J, Lim S, Ooi CP (2012) J Mater Sci 47:754. doi:10.1007/s10853-011-5851-7

    Article  CAS  Google Scholar 

  18. Salviulo G, Bettinelli M, Russo U, Speghini A, Nodari L (2011) J Mater Sci 46:910. doi:10.1007/s10853-010-4834-4

    Article  CAS  Google Scholar 

  19. Larson AC, Von Dreele RB (2004) General structure analysis system Los Alamos National Laboratory Report LAUR 86-748

  20. Garlea VO, Chakoumakos BC, Moore SA, Taylor GB, Chae T, Maples RG, Riedel RA, Lynn GW, Selby DL (2010) Appl Phys A 99:531

    Article  CAS  Google Scholar 

  21. Rietveld HM (1969) J Appl Crystallogr 2:65

    Article  CAS  Google Scholar 

  22. Saenger AT, Kuhs WF (1992) Zeit Kristallogr 199:123

    Article  CAS  Google Scholar 

  23. Thompson P, Cox DE, Hastings JB (1987) J Appl Crystallogr 20:79

    Article  CAS  Google Scholar 

  24. Finger LW, Cox DE, Jephcoat AP (1994) J Appl Crystallogr 27:892

    Article  CAS  Google Scholar 

  25. Blake RL, Hessevick RE (1966) Am Miner 51:123

    CAS  Google Scholar 

  26. Hill AH, Jiao F, Bruce PG, Harrison A, Kocklemann W, Ritter C (2008) Chem Mater 20:4891

    Article  CAS  Google Scholar 

  27. Cui J, Huang Q, Toby BH (2006) Powder Diffr 21:1

    Article  Google Scholar 

  28. Baron V, Gutzmer J, Rundlof H, Tellgren R (2005) Solid State Sci 7:753

    Article  CAS  Google Scholar 

  29. Shull CG, Strausser WA, Wollan EO (1951) Phys Rev 83:333

    Article  CAS  Google Scholar 

  30. Kyriacou A (2012) Dissertation http://gradworks.umi.com/3520018.pdf. Accessed 15 Jan 2013.

  31. Hughes JM, Fransolet AM, Schreyer W (1993) Neues Jahrb Miner 11:504

    Google Scholar 

  32. Low HR, Ritter C, White TJ (2010) Dalton Trans 39:6488

    Article  CAS  Google Scholar 

  33. Jiang H, Li Y, Zuo Y, Yang W, Zhang L, Li J, Wang L, Zou Q, Cheng L, Li J (2009) J Nanosci Nanotechnol 9:6844

    CAS  Google Scholar 

Download references

Acknowledgements

The Research at Oak Ridge National Laboratory’s High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Support from FAU with a Dissertation of the Year Award to the first author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Leventouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyriacou, A., Leventouri, T., Chakoumakos, B.C. et al. Combined X-ray and neutron diffraction Rietveld refinement in iron-substituted nano-hydroxyapatite. J Mater Sci 48, 3535–3545 (2013). https://doi.org/10.1007/s10853-013-7148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7148-5

Keywords

Navigation