Skip to main content
Log in

The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biodegradable materials in the form of fibres and yarns have attracted increasing attention due to a large surface area and various geometric possibilities in three-dimensional polymeric scaffolds for tissue engineering applications. In this study, poly(lactic acid) fibres were produced by melt spinning and subsequent solid-state drawing in order to serve as matrix materials for fibre-based scaffold architectures. The processing of both monofilament and multifilament fibres as well as draw ratios and temperatures were investigated to analyze the effect of process variables on the properties. Two different polylactides with different molecular weight were studied and characterized in terms of their tensile and thermal properties and morphology. The relevance of fibre formation, solid-state drawing and drawing temperatures was clearly supported by the results, and it was shown that the physical properties, such as crystallinity, mechanical strength and ductility can be controlled largely by the drawing process. The obtained fibres demonstrated great potential to be further processed into biotextiles (woven, knitted, or nonwoven scaffolds) using the textile technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moutos FT, Freed LE, Guilak F (2007) Nature Mater 6:162

    Article  CAS  Google Scholar 

  2. Kim MS, Kim JC, Kim YH (2008) Polym Advan Technol 19:748

    Article  CAS  Google Scholar 

  3. Paakinaho K, Ellä V, Syrjälä S, Kellomäki M (2009) Polym Degrad Stabil 94:438

    Article  CAS  Google Scholar 

  4. Yuan X, Mak AFT, Kwok KW, Yung BKO, Yao K (2001) J Appl Polym Sci 81:251

    Article  CAS  Google Scholar 

  5. Furuhashi Y, Kimura Y, Yoshie N, Yamane H (2006) Polymer 47:5965

    Article  CAS  Google Scholar 

  6. Zhang H, Yang G, Wang X, Shao H, Hu X (2009) Polym Eng Sci 49:2315

    Article  CAS  Google Scholar 

  7. Cicero JA, Dorgan JR (2001) J Polym Environ 9:1

    Article  CAS  Google Scholar 

  8. Nishimura Y, Takasu A, Inai Y, Hirabayashi T (2005) J Appl Polym Sci 97:2118

    Article  CAS  Google Scholar 

  9. Schmack G, Tändler B, Optiz G, Vogel R, Komber H, Häußler L, Voigt D, Weinmann S, Heinemann M, Fritz HG (2004) J Appl Polym Sci 91:800

    Article  CAS  Google Scholar 

  10. Grijpma DW, Penning JP, Pennings AJ (1994) Colloid Polym Sci 272:1068

    Article  CAS  Google Scholar 

  11. Cicero JA, Dorgan JR, Dec SF, Knauss DM (2002) Polym Degrad Stabil 78:95

    Article  CAS  Google Scholar 

  12. Gupta B, Revagade N, Anjum N, Atthoff B, Hilborn J (2006) J Appl Polym Sci 100:1239

    Article  CAS  Google Scholar 

  13. Gupta B, Revagade N, Anjum N, Atthoff B, Hilborn J (2006) J Appl Polym Sci 101:3774

    Article  CAS  Google Scholar 

  14. Horáček I, Kalíšek V (1994) J Appl Polym Sci 54:1751

    Article  Google Scholar 

  15. Zhou H, Green TB, Joo YL (2006) Polymer 47:7497

    Article  CAS  Google Scholar 

  16. Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) J Polym Sci Pol Chem 41:545

    Article  CAS  Google Scholar 

  17. Li D, Frey MW, Baeumner AJ (2006) J Memb Sci 279:354

    Article  CAS  Google Scholar 

  18. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403

    Article  CAS  Google Scholar 

  19. Chen J, Chu B, Hsiao BS (2006) J Biomed Mater Res A 79:307

    Google Scholar 

  20. Garlotta D (2001) J Polym Environ 9:63

    Article  CAS  Google Scholar 

  21. Suesat J, Phillips DAS, Wilding MA, Farrington DW (2003) Polymer 44:5993

    Article  CAS  Google Scholar 

  22. Taubner V, Shishoo R (2001) J Appl Polym Sci 79:2128

    Article  CAS  Google Scholar 

  23. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820

    Article  CAS  Google Scholar 

  24. Tuzlakoglu K, Reis RL (2008) Tiss Eng Part B Rev 15:17

    Article  Google Scholar 

  25. Dorgan JR, Janzen J, Knauss DM, Hait SB, Limoges BR, Hutchinson MH (2005) J Polym Sci Pol Phys 43:3100

    Article  CAS  Google Scholar 

  26. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stabil 95:116

    Article  CAS  Google Scholar 

  27. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stabil 95:2508

    Article  CAS  Google Scholar 

  28. Jeong SI, Ko EK, Yum JS, Jung CH, Lee YM, Shin HS (2008) Macromol Biosci 8:328

    Article  CAS  Google Scholar 

  29. Gupta B, Revagade N, Hilborn J (2007) Prog Polym Sci 32:455

    Article  CAS  Google Scholar 

  30. Grijpma DW, Altpeter H, Bevis MJ, Feijen J (2002) Polym Int 51:845

    Article  CAS  Google Scholar 

  31. Penning JP, Grijpma DW, Pennings AJ (1993) J Mater Sci Lett 12:1048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part through a grant by Bo Rydin Foundation, SCA, Sweden and the School of Engineering, University of Borås, Sweden. ConMed™ Linvatec is acknowledged for supplying the PLLA. Haike Hilke and Dr. Dan Åkesson at the University of Borås are especially acknowledged for technical support in the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Woo Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, M., Cho, SW. & Skrifvars, M. The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials. J Mater Sci 48, 3055–3066 (2013). https://doi.org/10.1007/s10853-012-7022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7022-x

Keywords

Navigation