Skip to main content
Log in

Adsorption of CH3S and CF3S on Pt(111) surface: a density functional theory study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Density functional theory calculations have been performed to study binding modes of adsorbed CX3S (X = H and F) on Pt(111) for a large range of adsorbate coverages and the consequent work function shifts. We find that these properties are all strongly correlated to the surface coverage. Depending on the molecular coverage on Pt surface, the work function shift may be as large as 0.7 eV for Pt–CH3S and 1.5 eV for Pt–CF3S with respect to the clean surface value. Two factors contribute to the work function shift: the charge transfer between the molecule and the surface, and the molecular dipole moment. While the charge transfer contribution always tend to decrease the work function, the molecular dipole moment contribution for the CH3S and CF3S cases are oppositely directed. Thus, appropriate choices of molecular components and control of surface coverage would be effective techniques to tune the work function of the metal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schreiber F (2000) Prog Surf Sci 65:151

    Article  CAS  Google Scholar 

  2. Grill L (2008) J Phys Condens Matter 20:053001

    Article  Google Scholar 

  3. Li Z, Chang S, Williams RS (2003) Langmuir 19:6744

    Article  CAS  Google Scholar 

  4. Stammer X, Tonigold K, Bashir A, Kfer D, Shekhah O, Hlsbusch C, Kind M, Gross A, Wll C (2010) Phys Chem Chem Phys 12:6445

    Article  CAS  Google Scholar 

  5. Rusu PC, Brocks G (2006) Phys Rev B 74:073414

    Article  Google Scholar 

  6. Kucera J, Gross A (2008) Langmuir 24:13985

    Article  CAS  Google Scholar 

  7. Rusu PC, Giovannetti G, Weijtens C, Coehoorn R, Brocks G (2009) J Phys Chem C 113:9974

    Article  CAS  Google Scholar 

  8. Maksymovych P, Sorescu DC, Yates JT Jr (2006) J Phys Chem B 110:21161

    Article  CAS  Google Scholar 

  9. Karhanek D, Bucko T, Hafner J (2010) J Phys Condens Matter 22:265005

    Article  Google Scholar 

  10. Ghiringhelli LM, Caputo R, Site LD (2007) J Phys Condens Matter 19:176004

    Article  Google Scholar 

  11. Ohara M, Kim Y, Kawai M (2006) Jpn J Appl Phys 45:2022

    Article  CAS  Google Scholar 

  12. Lee S, Park J, Ragan R, Kim S, Lee Z, Lim DK, Ohlberg DAA, Williams RS (2006) J Am Chem Soc 128:5745

    Article  CAS  Google Scholar 

  13. Jiao J, Bu SY, Wang GC, Bu XH (2008) J Mol Struct (Theochem) 862:80

    Article  CAS  Google Scholar 

  14. Rusu PC, Giovannetti G, Brocks G (2007) J Phys Chem C 111:14448

    Article  CAS  Google Scholar 

  15. Boer B, Hadipour A, Mandoc MM, Woudenbergh T, Blom PWM (2005) Adv Mater 17:621

    Article  Google Scholar 

  16. Campbell H, Rubin S, Zawodzinski TA, Kress JD, Martin RL, Smith DL (1996) Phys Rev B 54:14321

    Article  Google Scholar 

  17. Zehner RW, Parsons BF, Hsung RP, Sita LR (1999) Langmuir 15:1121

    Article  CAS  Google Scholar 

  18. Alloway DM, Hofmann H, Smith DL, Gruhn NE, Graham AL, Colorado R Jr, Wysocki VH, Lee TR, Lee PA, Armstrong NR (2003) J Phys Chem B 107:11690

    Article  CAS  Google Scholar 

  19. Rusu PC, Brocks G (2006) J Phys Chem B 110:22628

    Article  CAS  Google Scholar 

  20. Lee JJ, Fisher CJ, Bittencourt C, Woodruff DP, Chan ASY, Jones RG (2002) Surf Sci 516:1

    Article  CAS  Google Scholar 

  21. Kim SS, Kim Y, Kim HI, Lee TR, Perry SS, Rabalais JW (1998) J Chem Phys 109:9574

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  23. Grimme S (2006) J Comp Chem 27:1787

    Article  CAS  Google Scholar 

  24. Hsu YC, Liu X, Miller TA (1989) J Chem Phys 90:6852

    Article  CAS  Google Scholar 

  25. Zhu H, M. Aindow M, Ramprasad R (2009) Phys Rev B 80:201406; Zhu H, Ramprasad R (2011) J Appl Phys 109:083719

    Article  Google Scholar 

  26. El Bouzaidi RD, El Hammadi A, Boutalib A, El Mouhtadi M (2000) J Mol Struc (Theochem) 497:197

    Article  Google Scholar 

  27. Lide DR (2001) CRC handbook of chemistry and physics, 81st edn. CRC Press LLC, Boca Raton

    Google Scholar 

  28. Yang MC, Williamson JM, Miller TA (1997) J Mol Spectrosc 186:1

    Article  CAS  Google Scholar 

  29. Marenich AV, Boggs JE (2006) Int J Quantum Chem 106:2609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this study through a Grant from the National Science Foundation (NSF) and computational support through a NSF Teragrid Resource Allocation are gratefully acknowledged. Helpful discussions with Prof. Ramanath (RPI) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramprasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona Quintero, Y., Zhu, H. & Ramprasad, R. Adsorption of CH3S and CF3S on Pt(111) surface: a density functional theory study. J Mater Sci 48, 2277–2283 (2013). https://doi.org/10.1007/s10853-012-7005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7005-y

Keywords

Navigation