Skip to main content
Log in

Composite thermoelectric materials with embedded nanoparticles

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current status of the development of composite thermoelectric materials with embedded nanoparticles is reviewed. An introduction is given to the suggested mechanisms of improving thermoelectric properties by inclusions of nanoparticles and to experimental methods used to prepare such composites. The progress made in the development of thermoelectric materials with embedded nanoparticles is then covered, grouping the studies according to the optimal temperature range of operation of the materials investigated. Most studies have been devoted to materials within the medium temperature range, followed by low temperature materials, whereas high temperature materials have not yet received much attention within this area. In the majority of the materials systems studied, reports of improved thermoelectric performance upon introduction of nanoparticles in bulk thermoelectrics are found. However, for continued progress in this area, there is a need for systematic experimental studies that unambiguously correlate the resulting physical effects of the nanoinclusions to the measured materials properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Adv Mater 22(36):3970. doi:10.1002/adma.201000839

    Article  CAS  Google Scholar 

  2. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) Adv Mater 19(8):1043

    Article  CAS  Google Scholar 

  3. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Energy Environ Sci 2(5):466

    Article  CAS  Google Scholar 

  4. Medlin DL, Snyder GJ (2009) Curr Opin Colloid Interface Sci 14(4):226. doi:10.1016/j.cocis.2009.05.001

    Article  CAS  Google Scholar 

  5. Hicks LD, Dresselhaus MS (1993) Phys Rev B 47(24):16631

    Article  CAS  Google Scholar 

  6. Hicks LD, Dresselhaus MS (1993) Phys Rev B 47(19):12727

    Article  CAS  Google Scholar 

  7. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413(6856):597. doi:10.1038/35098012

    Article  CAS  Google Scholar 

  8. Winkler M, Liu X, Konig JD, Buller S, Schurmann U, Kienle L, Bensch W, Bottner H (2012) J Mater Chem 22(22):11323

    Article  CAS  Google Scholar 

  9. Rowe DM, Shukla VS, Savvides N (1981) Nature 290(5809):765

    Article  CAS  Google Scholar 

  10. Bux SK, Fleurial JP, Kaner RB (2010) Chem Commun 46(44):8311. doi:10.1039/c0cc02627a

    Article  CAS  Google Scholar 

  11. Fan SF, Zhao JN, Guo J, Yan QY, Ma J, Hng HH (2010) Appl Phys Lett 96(18):182104. doi:10.1063/1.3427427

    Article  Google Scholar 

  12. Zhao L-D, Zhang B-P, Liu W-S, Li J-F (2009) J Appl Phys 105(2):023704. doi:10.1063/1.3063694

    Article  Google Scholar 

  13. Scoville N, Bajgar C, Rolfe J, Fleurial JP, Vandersande J (1995) Nanostruct Mater 5(2):207

    Article  CAS  Google Scholar 

  14. Zebarjadi M, Esfarjani K, Shakouri A, Bahk J-H, Bian Z, Zeng G, Bowers J, Lu H, Zide J, Gossard A (2009) Appl Phys Lett 94(20):202105. doi:10.1063/1.3132057

    Article  Google Scholar 

  15. Zhou J, Li XB, Chen G, Yang RG (2010) Phys Rev B 82(11):115308. doi:10.1103/Physrevb.82.115308

    Article  Google Scholar 

  16. Faleev SV, Leonard F (2008) Phys Rev B 77(21):214304. doi:10.1103/PhysRevB.77.214304

    Article  Google Scholar 

  17. Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Phys Rev Lett 96(4):045901. doi:10.1103/PhysRevLett.96.045901

    Article  Google Scholar 

  18. Bhandari CM (1995) Minimizing the thermal conductivity. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, p 55

    Google Scholar 

  19. Prasher R (2006) J Heat Transf 128(7):627

    Article  Google Scholar 

  20. Mingo N, Hauser D, Kobayashi NP, Plissonnier M, Shakouri A (2009) Nano Lett 9(2):711. doi:10.1021/nl8031982

    Article  CAS  Google Scholar 

  21. Kim W, Majumdar A (2006) J Appl Phys 99(8):084306

    Article  Google Scholar 

  22. Ying CF, Truell R (1956) J Appl Phys 27(9):1086

    Article  Google Scholar 

  23. Kim W, Singer SL, Majumdar A, Zide JMO, Klenov D, Gossard AC, Stemmer S (2008) Nano Lett 8(7):2097. doi:10.1021/nl080189t

    Article  CAS  Google Scholar 

  24. Zide JMO, Vashaee D, Bian ZX, Zeng G, Bowers JE, Shakouri A, Gossard AC (2006) Phys Rev B 74 (20):205335. doi:10.1103/PhysRevB.74.205335

  25. Heremans JP, Thrush CM, Morelli DT (2005) J Appl Phys 98(6):063703. doi:10.1063/1.2037209

    Article  Google Scholar 

  26. Vashaee D, Shakouri A (2004) Phys Rev Lett 92(10):106103. doi:10.1103/PhysRevLett.92.106103

    Article  Google Scholar 

  27. Urban JJ, Talapin DV, Shevchenko EV, Kagan CR, Murray CB (2007) Nat Mater 6(2):115. doi:10.1038/nmat1826

    Article  CAS  Google Scholar 

  28. Ristein J (2006) Science 313(5790):1057. doi:10.1126/science.1127589

    Article  CAS  Google Scholar 

  29. Mahan GD, Sofo JO (1996) Proc Natl Acad Sci 93(15):7436

    Article  CAS  Google Scholar 

  30. Mott NF, Jones H (1936) The theory of the properties of metals and alloys. The international series of monographs on physics, 1 edn. Oxford University Press, Oxford

    Google Scholar 

  31. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Science 321(5888):554. doi:10.1126/science.1159725

    Article  CAS  Google Scholar 

  32. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) Science 320(5876):634. doi:10.1126/science.1156446

    Article  CAS  Google Scholar 

  33. Chen C, Liu DW, Zhang BP, Li JF (2011) J Electron Mater 40(5):942. doi:10.1007/s11664-010-1463-2

    Article  CAS  Google Scholar 

  34. Zhang T, Zhang Q, Jiang J, Xiong Z, Chen J, Zhang Y, Li W, Xu G (2011) Appl Phys Lett 98(2):022104. doi:10.1063/1.3541654

    Article  Google Scholar 

  35. Ganguly S, Zhou C, Morelli D, Sakamoto J, Uher C, Brock SL (2011) J Solid State Chem 184(12):3195. doi:10.1016/j.jssc.2011.09.031

    Article  CAS  Google Scholar 

  36. Sun JH, Qin XY, Xin HX, Li D, Pan L, Song CJ, Zhang J, Sun RR, Wang QQ, Liu YF (2010) J Alloys Compd 500(2):215. doi:10.1016/j.jallcom.2010.04.006

    Article  CAS  Google Scholar 

  37. Zhao L-D, Zhang B-P, Li J-F, Zhou M, Liu W-S, Liu J (2008) J Alloys Compd 455(1–2):259. doi:10.1016/j.jallcom.2007.01.015

    Article  CAS  Google Scholar 

  38. Chen LD, Kawahara T, Tang XF, Goto T, Hirai T, Dyck JS, Chen W, Uher C (2001) J Appl Phys 90(4):1864. doi:10.1063/1.1388162

    Article  CAS  Google Scholar 

  39. Tang X, Zhang Q, Chen L, Goto T, Hirai T (2005) J Appl Phys 97(9):093712. doi:10.1063/1.1888048

    Article  Google Scholar 

  40. Sales BC, Mandrus D, Williams RK (1996) Science 272(5266):1325. doi:10.1126/science.272.5266.1325

    Article  CAS  Google Scholar 

  41. Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, p 407

    Google Scholar 

  42. Nolas GS, Cohn JL, Slack GA (1998) Phys Rev B 58(1):164

    Article  CAS  Google Scholar 

  43. Alboni PN, Ji X, He J, Gothard N, Tritt TM (2008) J Appl Phys 103(11):113707. doi:10.1063/1.2937904

    Article  Google Scholar 

  44. J. L. Mi, Zhao XB, Zhu TJ, Tu JP (2008) Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion. J Phys D 41(20):205403

    Google Scholar 

  45. Xiong Z, Chen X, Zhao X, Bai S, Huang X, Chen L (2009) Solid State Sci 11(9):1612. doi:10.1016/j.solidstatesciences.2009.06.007

    Article  CAS  Google Scholar 

  46. Zhao XY, Shi X, Chen LD, Zhang WQ, Bai SQ, Pei YZ, Li XY, Goto T (2006) Appl Phys Lett 89(9):092121. doi:10.1016/1.2345249

    Article  Google Scholar 

  47. Li H, Tang XF, Zhang QJ, Uher C (2009) Appl Phys Lett 94(10):102114. doi:10.1063/1.3099804

    Article  Google Scholar 

  48. Su X, Li H, Wang G, Chi H, Zhou X, Tang X, Zhang Q, Uher C (2011) Chem Mater 23(11):2948

    Article  CAS  Google Scholar 

  49. Chen Z, Jeffrey S, Donald M, Xiaoyuan Z, Guoyu W, Ctirad U (2011) J Appl Phys 109(6):063722

    Article  Google Scholar 

  50. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Science 303(5659):818. doi:10.1126/science.1092963

    Article  CAS  Google Scholar 

  51. Quarez E, Hsu K-F, Pcionek R, Frangis N, Polychroniadis EK, Kanatzidis MG (2005) J Am Chem Soc 127(25):9177

    Article  CAS  Google Scholar 

  52. Wang H, Li J-F, Nan C-W, Zhou M, Liu W, Zhang B-P, Kita T (2006) Appl Phys Lett 88(9):092104. doi:10.1063/1.2181197

    Article  Google Scholar 

  53. Zhou M, Li J-F, Kita T (2008) J Am Chem Soc 130(13):4527

    Article  CAS  Google Scholar 

  54. Kanatzidis MG (2009) Chem Mater 22(3):648

    Article  Google Scholar 

  55. Sootsman JR, Kong H, Uher C, D’Angelo JJ, Wu C-I, Hogan TP, Caillat T, Kanatzidis MG (2008) Angew Chem Int Ed 47(45):8618

    Article  CAS  Google Scholar 

  56. He JQ, Sootsman JR, Girard SN, Zheng JC, Wen JG, Zhu YM, Kanatzidis MG, Dravid VP (2010) J Am Chem Soc 132(25):8669. doi:10.1021/ja1010948

    Article  CAS  Google Scholar 

  57. Androulakis J, Lin C-H, Kong H-J, Uher C, Wu C-I, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) J Am Chem Soc 129(31):9780. doi:10.1021/ja071875h

    Article  CAS  Google Scholar 

  58. Ikeda T, Haile SM, Ravi VA, Azizgolshani H, Gascoin F, Snyder GJ (2007) Acta Mater 55(4):1227

    Article  CAS  Google Scholar 

  59. Johnsen S, He JQ, Androulakis J, Dravid VP, Todorov I, Chung DY, Kanatzidis MG (2011) J Am Chem Soc 133(10):3460. doi:10.1021/ja109138p

    Article  CAS  Google Scholar 

  60. Biswas K, He JQ, Zhang QC, Wang GY, Uher C, Dravid VP, Kanatzidis MG (2011) Nat Chem 3(2):160. doi:10.1038/nchem.955

    Article  CAS  Google Scholar 

  61. Androulakis J, Todorov I, He JQ, Chung DY, Dravid V, Kanatzidis M (2011) J Am Chem Soc 133(28):10920. doi:10.1021/ja203022c

    Article  CAS  Google Scholar 

  62. Zhao LD, Lo SH, He JQ, Li H, Biswas K, Androulakis J, Wu CI, Hogan TP, Chung DY, Dravid VP, Kanatzidis MG (2011) J Am Chem Soc 133(50):20476. doi:10.1021/ja208658w

    Article  CAS  Google Scholar 

  63. Biswas K, He J, Blum ID, Wu C-I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) Nature 489(7416):414. doi:10.1038/nature11439

    Article  CAS  Google Scholar 

  64. Uher C, Yang J, Hu S, Morelli DT, Meisner GP (1999) Phys Rev B 59(13):8615

    Article  CAS  Google Scholar 

  65. Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner GP, Uher C (2001) Appl Phys Lett 79(25):4165

    Article  CAS  Google Scholar 

  66. Yang J, Li H, Wu T, Zhang W, Chen L, Yang J (2008) Adv Funct Mater 18(19):2880

    Article  CAS  Google Scholar 

  67. Xie WJ, He J, Zhu S, Su XL, Wang SY, Holgate T, Graff JW, Ponnambalam V, Poon SJ, Tang XF, Zhang QJ, Tritt TM (2010) Acta Mater 58(14):4705. doi:10.1016/j.actamat.2010.05.005

    Article  CAS  Google Scholar 

  68. Poon SJ, Wu D, Zhu S, Xie WJ, Tritt TM, Thomas P, Venkatasubramanian R (2011) J Mater Res 26(22):2795. doi:10.1557/jmr.2011.329

    Article  CAS  Google Scholar 

  69. Christensen M, Johnsen S, Iversen BB (2010) Dalton Trans 39(4):978. doi:10.1039/b916400f

    Article  CAS  Google Scholar 

  70. Saramat A, Svensson G, Palmqvist AEC, Stiewe C, Mueller E, Platzek D, Williams SGK, Rowe DM, Bryan JD, Stucky GD (2006) J Appl Phys 99(2):023708. doi:10.1063/1.2163979

    Article  Google Scholar 

  71. Toberer ES, May AF, Snyder GJ (2010) Chem Mater 22(3):624. doi:10.1021/cm901956r

    Article  CAS  Google Scholar 

  72. Rogl P (2005) Formation of clathrates. In: ICT: 2005 24th international conference on thermoelectrics, Clemson, SC

  73. Heijl R, Cederkrantz D, Nygren M, Palmqvist AEC (2012) J Appl Phys 112(4):044313

    Article  Google Scholar 

  74. Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV (2006) Phys Rev B 74(4):045207. doi:10.1103/PhysRevB.74.045207

    Article  Google Scholar 

  75. Zhang Q, He J, Zhu TJ, Zhang SN, Zhao XB, Tritt TM (2008) Appl Phys Lett 93(10):102109. doi:10.1063/1.2981516

    Article  Google Scholar 

  76. Cederkrantz D, Farahi N, Borup KA, Iversen BB, Nygren M, Palmqvist AEC (2012) J Appl Phys 111(2):023701. doi:10.1063/1.3675512

    Article  Google Scholar 

  77. Wang XW, Lee H, Lan YC, Zhu GH, Joshi G, Wang DZ, Yang J, Muto AJ, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren ZF (2008) Appl Phys Lett 93(19):193121. doi:10.1063/1.3027060

    Article  Google Scholar 

  78. Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS, Chen G, Ren Z (2008) Nano Lett 8(12):4670

    Article  CAS  Google Scholar 

  79. May AF, Fleurial J-P, Snyder GJ (2008) Phys Rev B 78(12):125205. doi:10.1103/PhysRevB.78.125205

    Article  Google Scholar 

  80. Jeng M-S, Yang R, Song D, Chen G (2008) J Heat Transf 130(4):042410. doi:10.1115/1.2818765

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Mistra, the Swedish Foundation for Strategic Environmental Research, through the E4-Mistra program, and thank its members for fruitful discussions. AECP enjoys support from the Swedish Research Council for a Senior Researcher position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders E. C. Palmqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Heijl, R. & Palmqvist, A.E.C. Composite thermoelectric materials with embedded nanoparticles. J Mater Sci 48, 2767–2778 (2013). https://doi.org/10.1007/s10853-012-6976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6976-z

Keywords

Navigation