Skip to main content

Advertisement

Log in

Fabrication and characterization of ZrO2–CaO–P2O5–Na2O–SiO2 bioactive glass ceramics

Journal of Materials Science Aims and scope Submit manuscript

Abstract

SiO2–CaO–Na2O–P2O5–ZrO2 based bioactive glasses with different compositions of SiO2 and yttrium stabilized ZrO2 were prepared by the conventional melt quenching technique. The effects on the chemical–mechanical properties of bioactive glasses due to the addition of ZrO2 by replacing SiO2 were investigated. Microstructure and phase behavior were studied by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. Compressive strength, porosity, Vickers hardness, and Young’s modulus were measured as mechanical properties. Bioactivity and cell viability were investigated by immersion in simulated body fluid and MTT assay analysis. Osteosarcoma cell proliferation on the specimen surfaces was examined by confocal laser scanning microscopy. The results showed that replacing SiO2 with ZrO2 helps the bioactive glass to be completely vitrified at comparatively lower sintering temperature than conventional Bioglass®. The mechanical properties were also improved without compromising biocompatibility. Bioactive glass containing 10 wt% ZrO2 and 35 wt% SiO2 showed compressive strength of 399.71 MPa, Young's modulus of 22.3 GPa, Vicker’s hardness of 502.54 HV, and porosity of 26 vol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Hench LL, Anderson O (1993) In: Hence LL, Wilson J (eds) Chapter 3: Bioactive glasses, an introduction to bioceramics. World Scientific Publishing Co., Singapore

    Google Scholar 

  2. Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr (1971) J Biomed Mater Res 5:117–141

    Article  Google Scholar 

  3. Hench LL (2009) J Eur Ceram Soc 29:1257

    Article  CAS  Google Scholar 

  4. Hench LL (2006) J Mater Sci Mater Med 17:967–978

    Article  CAS  Google Scholar 

  5. Hoppe A, Güldal NS, Boccaccini AR (2011) Biomaterials 32(11):2757–2774

    Article  CAS  Google Scholar 

  6. Fujibayashi F, Neo M, Kim HM, Kokubo T, Nakamura T (2003) Biomaterials 24:1349–1356

    Article  CAS  Google Scholar 

  7. Ono K, Yamamuro T, Nakamura T, Kokubo T (1990) J Biomed Mater Res 24(1):11–20

    Article  CAS  Google Scholar 

  8. Beall GH, Chyung K, Watkins HJ (1974) Mica glass-ceramics. US Patent No. 3801295

  9. Vogel W, Höland W, Naumann K, Gummel J (1986) J Non Cryst Solids 80:34–51

    Article  CAS  Google Scholar 

  10. Nan Y, Lee WE, James PF (1992) J Am Ceram Soc 75:1641–1647

    Article  CAS  Google Scholar 

  11. Kokubo T, Matsushita T, Takadama H (2007) J Eur Ceram Soc 27:1553–1558

    Article  CAS  Google Scholar 

  12. Liping Y, Xiao H, Cheng Y (2008) Ceram Int 34:63–68

    Article  Google Scholar 

  13. Wu JM, Xiao F, Hayakawa S, Tsuru K, Takemoto S, Osaka A (2003) J Mater Sci Mater Med 14:1027–1032

    Article  CAS  Google Scholar 

  14. Park JB, Kim YK (2002) In: Park JB, Bronzino JD (eds) Metallic biomaterials, biomaterials—principles and applications. CRC press, Boca Raton

    Google Scholar 

  15. Rajendran V, Gayathri Devi AV, Azooz M, El-Batal FH (2007) J Non Cryst Solids 353:77–84

    Article  CAS  Google Scholar 

  16. Brink M, Pitkänen V, Tikkanen J, Paajanen M, Graeffe G (1996) In: Kokubo T, Nakamura T, Miyaji F (eds) Spherical particles of a bioactive glass-manufacturing and reactions in vitro, bioceramics, vol 9. Pergamon, Oxford

    Google Scholar 

  17. Sepulveda P, Jones JR, Hench LL (2001) J Biomed Mater Res Appl Biomater 58:734–740

    Article  CAS  Google Scholar 

  18. Magallanes-Perdomo M, Luklinska ZB, De Aza AH, Carrodeguas RG, Aza S, Pena P (2011) J Eur Ceram Soc 31:1549–1561

    Article  CAS  Google Scholar 

  19. Brauer DS, Rüssel C, Kraft J (2007) J Non-Cryst Solids 353:263–270

    Article  CAS  Google Scholar 

  20. Piconi C, Maccauro G (1999) Biomaterials 20:1–25

    Article  CAS  Google Scholar 

  21. Nakanishi N, Shigematsu T (1992) Mater Trans 33:318–323

    CAS  Google Scholar 

  22. Ho WF, Hsu HC, Peng YF, Wu YC (2011) Ceram Int 37:1169–1171

    Article  CAS  Google Scholar 

  23. Kord M, Marghussian VK, Eftekhari-yekta B, Bahrami A (2009) Mater Res Bull 44:1670–1675

    Article  CAS  Google Scholar 

  24. Blessing GY (1990) In: Alan Wolfenden (ed) The pulsed ultrasonic velocity method for determining materials elastic moduli, dynamic elastic modulus measurements in materials. ASTM International, Philadelphia

    Google Scholar 

  25. Czichos H, Saito T, Smith LE (2011) Springer handbook of metrology and testing. Springer, Heidelberg

    Book  Google Scholar 

  26. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  27. Habibe AF, Maeda LD, Souza RC, Barboza MJR, Daguano JKMF, Rogero SO, Santos C (2009) Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C 29:1959–1964

    Article  CAS  Google Scholar 

  28. Peitl OF, Torre GL, Hench LL (1996) J Biomed Mater Res Part A 30:509–514

    Article  Google Scholar 

  29. Peitl OF, Zanotto ED, Hench LL (2001) J Non-Cryst Solids 292:115–126

    Article  CAS  Google Scholar 

  30. Lian J, Garay JE, Wang J (2007) Scripta Mater 56:1095–1098

    Article  CAS  Google Scholar 

  31. Rouxel T (2007) J Am Ceram Soc 90:3019–3039

    Article  CAS  Google Scholar 

  32. Korhonen AS, Jones PL, Cocks FH (1981) Mater Sci Eng 49:127–132

    Article  CAS  Google Scholar 

  33. Lu X, Leng Y (2005) Biomaterials 26:1097–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Korea Health Technology R&D project, Ministry of Health and Welfare, Republic of Korea. (A111084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong Taek Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, D., So-Ra, S. & Lee, B.T. Fabrication and characterization of ZrO2–CaO–P2O5–Na2O–SiO2 bioactive glass ceramics. J Mater Sci 48, 1863–1872 (2013). https://doi.org/10.1007/s10853-012-6956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6956-3

Keywords

Navigation