, Volume 48, Issue 5, pp 1863-1872

Fabrication and characterization of ZrO2–CaO–P2O5–Na2O–SiO2 bioactive glass ceramics

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

SiO2–CaO–Na2O–P2O5–ZrO2 based bioactive glasses with different compositions of SiO2 and yttrium stabilized ZrO2 were prepared by the conventional melt quenching technique. The effects on the chemical–mechanical properties of bioactive glasses due to the addition of ZrO2 by replacing SiO2 were investigated. Microstructure and phase behavior were studied by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. Compressive strength, porosity, Vickers hardness, and Young’s modulus were measured as mechanical properties. Bioactivity and cell viability were investigated by immersion in simulated body fluid and MTT assay analysis. Osteosarcoma cell proliferation on the specimen surfaces was examined by confocal laser scanning microscopy. The results showed that replacing SiO2 with ZrO2 helps the bioactive glass to be completely vitrified at comparatively lower sintering temperature than conventional Bioglass®. The mechanical properties were also improved without compromising biocompatibility. Bioactive glass containing 10 wt% ZrO2 and 35 wt% SiO2 showed compressive strength of 399.71 MPa, Young's modulus of 22.3 GPa, Vicker’s hardness of 502.54 HV, and porosity of 26 vol%.