Skip to main content

Advertisement

Log in

Electric-field thermopower modulation in SrTiO3-based field-effect transistors

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electric-field thermopower modulation method is demonstrated in detail using SrTiO3-based field-effect transistor structure as an example. Using water-infiltrated nanoporous 12CaO·7Al2O3 glass “CAN” as the gate insulator, carrier electrons up to ~1015 cm−2 can accumulate within an extremely narrow 2D electron gas (~2 nm), leading to an unusually large enhancement of thermopower. Our electric field-effect approach should be applicable to fully verify the performance of thermoelectric materials with complicated crystal structures. This approach may accelerate the development of nanostructures of high performance thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton

    Book  Google Scholar 

  2. DiSalvo FJ (1999) Science 285:703

    Article  CAS  Google Scholar 

  3. Snyder GJ, Toberer ES (2008) Nat Mater 7:105

    Article  CAS  Google Scholar 

  4. Seebeck TJ (1823) Abh K Akad Wiss 265

  5. Venkatasubramanian R, Silvola E, Colpitts T, O’Quinn B (2001) Nature 413:597

    Article  CAS  Google Scholar 

  6. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Science 303:818

    Article  CAS  Google Scholar 

  7. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G (2008) Ren Z 320:634

    CAS  Google Scholar 

  8. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Nature 451:163

    Article  CAS  Google Scholar 

  9. Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727

    Article  CAS  Google Scholar 

  10. Hicks LD, Harman TC, Sun X, Dresselhaus MS (1996) Phys Rev B 53:R10493

    Article  CAS  Google Scholar 

  11. Ohta H, Kim SW, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Nat Mater 6:129

    Article  CAS  Google Scholar 

  12. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Science 321:554

    Article  CAS  Google Scholar 

  13. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011) Nature 476:66

    Article  Google Scholar 

  14. Cutler M, Mott NF (1969) Phys Rev 181:1336

    Article  CAS  Google Scholar 

  15. Pernstich KP, Rössner B, Batlogg B (2008) Nat Mater 7:321

    Article  CAS  Google Scholar 

  16. Liang W, Hochbaum AI, Fardy M, Rabin O, Zhang M, Yang P (2009) Nano Lett 9:1689

    Article  CAS  Google Scholar 

  17. Ohta H, Masuoka Y, Asahi R, Kato T, Ikuhara Y, Nomura K, Hosono H (2009) Appl Phys Lett 95:113505

    Article  Google Scholar 

  18. Ohta H, Mizuno T, Zheng S, Kato T, Ikuhara Y, Abe K, Kumomi H, Nomura K, Hosono H (2012) Adv Mater 24:740

    Article  CAS  Google Scholar 

  19. Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M (2008) Nat Mater 7:855

    Article  CAS  Google Scholar 

  20. Kergoat L, Herlogsson L, Braga D, Piro B, Pham M, Crispin X, Berggren M, Horowitz G (2010) Adv Mater 22:2565

    Article  CAS  Google Scholar 

  21. Yamada Y, Ueno K, Fukumura T, Yuan HT, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y, Kawasaki M (2011) Science 332:1065

    Article  CAS  Google Scholar 

  22. Ohta H, Sato Y, Kato T, Kim SW, Nomura K, Ikuhara Y, Hosono H (2010) Nat Commun 1:118

    Article  Google Scholar 

  23. Hayashi K, Matsuishi S, Kamiya T, Hirano M, Hosono H (2002) Nature 419:462

    Article  CAS  Google Scholar 

  24. Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) Science 301:626

    Article  CAS  Google Scholar 

  25. Kim SW, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H (2007) Nano Lett 7:1138

    Article  CAS  Google Scholar 

  26. Hayashi K, Hirano M, Hosono H (2005) J Phys Chem B 109:11900

    Article  CAS  Google Scholar 

  27. Hosono H, Abe Y (1987) J Am Ceram Soc 70:C38

    Google Scholar 

  28. Ohta H, Sugiura K, Koumoto K (2009) Inorg Chem 47:8429

    Article  Google Scholar 

  29. Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, Koinuma H (1994) Science 266:1540

    Article  CAS  Google Scholar 

  30. Light TS, Licht S, Bevilacqua AC, Morash KR (2005) Electrochem Solid State 8:E16

    Article  CAS  Google Scholar 

  31. Sze SM (2002) Semiconductor devices: physics and technology 2nd Ed. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The author thanks Y. Sato, T. Kato, S. Zheng, K. Abe, H. Kumomi, S–W. Kim, K. Nomura, Y. Ikuhara, H. Hosono, T. Mizuno, and R. Asahi for the experimental helps and the valuable discussions. This work was supported by MEXT (22360271, 22015009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Ohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, H. Electric-field thermopower modulation in SrTiO3-based field-effect transistors. J Mater Sci 48, 2797–2805 (2013). https://doi.org/10.1007/s10853-012-6856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6856-6

Keywords

Navigation