Skip to main content
Log in

Heat effect of grain boundary wetting in Al–Mg alloys

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary wetting transitions were previously observed in the Al–Mg system. The melting of as-cast Al–5 wt% Mg and Al–10 wt% Mg alloys was studied by the differential scanning calorimetry. The asymmetric shape of the melting curve permitted the observation of the thermal effect of grain boundary wetting. The difference in the shape of the melting curve for the two studied alloys is explained by the different temperature dependence of the fraction of completely wetted grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:4619

    Article  CAS  Google Scholar 

  2. Mazilkin AA, Straumal BB, Rabkin E, Baretzky B, Enders S, Protasova SG, Kogtenkova OA, Valiev RZ (2006) Acta Mater 54:3933

    Article  CAS  Google Scholar 

  3. Roven HJ, Liu M, Murashkin MY, Valiev RZ, Kilmametov AR, Ungár T, Balogh L (2008) Mater Sci Forum 604:179

    Article  Google Scholar 

  4. Lee Z, Zhou F, Valiev RZ, Lavernia EJ, Nutt SR (2004) Scripta Mater 51:209

    Article  CAS  Google Scholar 

  5. Straumal BB, López G, Mittemeijer EJ, Gust W, Zhilyaev AP (2003) Def Diff Forum 216:307

    Google Scholar 

  6. Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS (2010) J Mater Sci 45:2057. doi:10.1007/s10853-009-4014-6

    Article  CAS  Google Scholar 

  7. German RM, Suri P, Park SJ (2009) J Mater Sci 44:1

    Article  CAS  Google Scholar 

  8. Watson EB (1982) Geology 10:236

    Article  CAS  Google Scholar 

  9. Laporte D, Watson EB (1995) Chem Geol 124:161

    Article  CAS  Google Scholar 

  10. Gabrisch H, Dahmen U, Johnson E (1998) Microsc Res Tech 42:241

    Article  CAS  Google Scholar 

  11. Felberbaum L, Rossoll A, Mortensen A (2005) J Mater Sci 40:3121. doi:10.1007/s10853-005-2673-5

    Article  CAS  Google Scholar 

  12. Empl D, Felberbaum L, Laporte V, Chatain D, Mortensen A (2009) Acta Mater 57:2527

    Article  CAS  Google Scholar 

  13. Cahn JW (1977) J Chem Phys 66:3667

    Article  CAS  Google Scholar 

  14. Ebner C, Saam WF (1977) Phys Rev Lett 38:1486

    Article  CAS  Google Scholar 

  15. Straumal BB, Gust W (1996) Mater Sci Forum 207:59

    Article  Google Scholar 

  16. Straumal BB, Gust W, Watanabe T (1999) Mater Sci Forum 294:411

    Article  Google Scholar 

  17. López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537

    Article  Google Scholar 

  18. Amouyal Y, Divinski SV, Klinger L, Rabkin E (2008) Acta Mater 56:5500

    Article  CAS  Google Scholar 

  19. Straumal BB, Kogtenkova OA, Protasova SG, Zięba P, Czeppe T, Baretzky B, Valiev RZ (2011) J Mater Sci 46:4243. doi:10.1007/s10853-011-5257-6

    Article  CAS  Google Scholar 

  20. Stølen S, Grønvold F (1999) Thermochim Acta 327:1

    Article  Google Scholar 

  21. Della Gatta G, Richardson M, Sarge SM et al. (2006) Pure Appl Chem 78:1455

    Google Scholar 

  22. Sun JQ, Zhang RY, Liu ZP et al (2007) Energy Convers Manag 48:619

    Article  CAS  Google Scholar 

  23. Dean JA (1995) The analytical chemistry handbook. McGraw Hill, New York (Standards ASTM D 3417, ASTM D 3418, ASTM E 1356, ISO 11357)

  24. Massalski TB (ed) (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  25. Straumal BB, Kogtenkova O, Zięba P (2008) Acta Mater 56:925

    Article  CAS  Google Scholar 

  26. Straumal B, Valiev R, Kogtenkova O, Zieba P, Czeppe T, Bielanska E, Faryna M (2008) Acta Mater 56:6123

    Article  CAS  Google Scholar 

  27. Wynblatt P, Takashima M (2001) Interface Sci 9:265

    Article  CAS  Google Scholar 

  28. Chatain D (2008) Ann Rev Mater Res 38:45

    Article  CAS  Google Scholar 

  29. Randle V, Rohrer GS, Hu Y (2008) Scr Mater 58:183

    Article  CAS  Google Scholar 

  30. Downey ST II, Bembridge N, Kalu PN, Miller HM, Rohrer GS, Han K (2007) J Mater Sci 42:9543. doi:10.1007/s10853-007-1959-1

    Article  CAS  Google Scholar 

  31. Bernardini J, Chatain D, Monchoux JP, Rabkin E (2002) J Physique IV 12:229

    Article  CAS  Google Scholar 

  32. Straumal BB, Polyakov SA, Mittemeijer EJ (2006) Acta Mater 54:167. doi:10.1016/j.acatamat.2005.08.037

    Article  CAS  Google Scholar 

  33. Schölhammer J, Baretzky B, Gust W, Mittemeijer E, Straumal B (2001) Interface Sci 9:43. doi:10.1023/A:1011266729152

    Article  Google Scholar 

  34. Straumal BB, Klinger LM, Shvindlerman LS (1984) Acta Metall 32:1355. doi:10.1016/0001-6160(84)90081-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Russian Foundation for Basic Research (contract 11-03-01198), Program of bilateral cooperation between Russian and Polish Academies of sciences, the grant of President of Russian Federation for young scientists (MK-3748.2011.8), and Polish National Science Centre (grant UMO-2011/01/M/ST8/07822) for the financial support. Authors cordially thank Prof. R.Z. Valiev and Dr. A. Gornakova for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogtenkova, O.A., Protasova, S.G., Mazilkin, A.A. et al. Heat effect of grain boundary wetting in Al–Mg alloys. J Mater Sci 47, 8367–8371 (2012). https://doi.org/10.1007/s10853-012-6786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6786-3

Keywords

Navigation