Skip to main content
Log in

Impregnation of waterwheel supramolecules as proton carriers in Nafion-perfluorinated ionomer membranes

Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve proton conduction at elevated temperatures, in situ impregnation of Nafion membranes has been carried out by infusing Noria “waterwheel” supramolecules, containing numerous hydroxyl terminal groups, into the ionic domains of Nafion via swelling in mixed methanol and dimethylacetamide solutions. Fourier transform infrared (FTIR) spectroscopy study reveals that interspecies hydrogen bonding occurs between hydroxyl groups of Noria and sulfonate groups of Nafion, which has facilitated retaining the modifier molecules within the membrane. Water uptake experiments exhibit that the impregnation of Noria into Nafion ionic domains suppresses the membrane swelling. The ion exchange capacity also increases upon this impregnation. The proton conductivity is reduced at low operating temperatures relative to neat Nafion due to the loss of hydronium ion transport. However, the proton conductivity of the Noria-impregnated membrane shows 60 % improvement over that of neat Nafion at elevated temperatures of 115 °C. Of particular importance is that the Noria-impregnated membrane exhibits improved thermal, mechanical, and electrochemical stabilities with proton conductivity enhancement at elevated temperatures. Moreover, there is no noticeable difference in FTIR spectra before and after the proton fuel cell tests, indicating the improvement in the chemical stability of the Noria-impregnated membranes under the present proton fuel environment. It appears that these waterwheel supramolecules may have potential utility as high temperature electrolytes (or solid proton carriers) in proton fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Grot W (1972) Chem Ing Tech 44:167. doi:10.1002/cite.330440408

    Article  CAS  Google Scholar 

  2. Grot WG (1994) Macromol Symp 82:161. doi:10.1002/masy.19940820117

    Article  CAS  Google Scholar 

  3. Yeo SC, Eisenberg A (1977) J Appl Polym Sci 21:875. doi:10.1002/app.1977.070210401

    Article  CAS  Google Scholar 

  4. Steck A, Yeager HL (1980) Anal Chem 52:1215. doi:10.1021/ac50058a013

    Article  CAS  Google Scholar 

  5. Mauritz KA, Moore RB (2004) Chem Rev 104:4535. doi:10.1021/cr0207123

    Article  CAS  Google Scholar 

  6. McLean RS, Doyle M, Sauer BB (2000) Macromolecules 33:6541. doi:10.1021/ma000464h

    Article  CAS  Google Scholar 

  7. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Chichester

    Google Scholar 

  8. Schmidt C, Glück T, Schmidt-Naake G (2008) Chem Eng Technol 31:13. doi:10.1002/ceat.200700054

    Article  CAS  Google Scholar 

  9. Mistry MK, Subianto S, Choudhury NR, Dutta NK (2009) Langmuir 25:9240. doi:10.1021/la901330y

    Article  CAS  Google Scholar 

  10. Mistry MK, Choudhury NR, Dutta NK, Knott R, Shi Z, Holdcroff S (2008) Chem Mater 20:6857. doi:10.1021/cm801374h

    Article  CAS  Google Scholar 

  11. Kannan AG, Choudhury NR, Dutta NK (2009) J Membr Sci 333:50. doi:10.1016/j.memsci.2009.01.048

    Article  CAS  Google Scholar 

  12. Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Chem Soc Rev 40:961. doi:10.1039/C0CS00144A

    Article  CAS  Google Scholar 

  13. Kudo H, Hayashi R, Mitani K et al (2006) Angew Chem Int Ed 45:7948. doi:10.1002/anie.200603013

    Article  CAS  Google Scholar 

  14. Zawodzinski TA (1993) J Electrochem Soc 140:1981. doi:10.1149/1.2220749

    Article  CAS  Google Scholar 

  15. Surowiec J, Bogoczek R (1988) J Therm Anal Calorim 33:1097. doi:10.1007/BF01912735

    Article  Google Scholar 

  16. Kyu T, Hashiyama M, Eisenberg A (1983) Can J Chem 61:680. doi:10.1139/v83-126

    Article  CAS  Google Scholar 

  17. Kyu T, Eisenberg A (1984) J Polym Sci Pol Symp 71:203. doi:10.1002/polc.5070710119

    Article  CAS  Google Scholar 

  18. Lage L, Delgado P, Kawano Y (2004) J Therm Anal Calorim 75:521. doi:10.1023/B:JTAN.0000027142.21928.c7

    Article  CAS  Google Scholar 

  19. Hsu WY, Barkley JR, Meakin P (1980) Macromolecules 13:198. doi:10.1021/ma60073a041

    Article  CAS  Google Scholar 

  20. Falk M (1980) Can J Chem 58:1495. doi:10.1139/v80-237

    Article  CAS  Google Scholar 

  21. Tannenbaum R, Rajagopalan M, Eisenberg A (2003) J Polym Sci Pol Phys 41:1814. doi:10.1002/polb.10557

    Article  CAS  Google Scholar 

  22. Gierke TD, Munn GE, Wilson FC (1981) J Polym Sci Pol Phys 19:1687. doi:10.1002/pol.1981.180191103

    Article  CAS  Google Scholar 

  23. Fujimura M, Hashimoto T, Kawai H (1982) Macromolecules 15:136. doi:10.1021/ma00229a028

    Article  CAS  Google Scholar 

  24. Paddison SJ (2003) Ann Rev Mater Res 33:289. doi:10.1146/annurev.matsci.33.022702.155102

    Article  CAS  Google Scholar 

  25. Agmon N (1995) Chem Phys Lett 244:456. doi:10.1016/0009-2614(95)00905-J

    Article  CAS  Google Scholar 

  26. Kreuer KD (1997) Solid State Ion 94:55. doi:10.1016/S0167-2738(96)00608-X

    Article  CAS  Google Scholar 

  27. Yuan XZ, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells. Springer, London

    Book  Google Scholar 

  28. Anantaraman AV, Gardner CL (1996) J Electroanal Chem 414:115. doi:10.1016/0022-0728(96)04690-6

    Article  Google Scholar 

  29. Kim M-H, Glinka CJ, Grot SA, Grot WG (2006) Macromolecules 39:4775. doi:10.1021/ma060576u

    Article  CAS  Google Scholar 

  30. Nazir NA, Kyu T, Pischera AM, Espy M, Nosaka M, Kudo H, Nishikubo T (2011) Polymers 3:2018. doi:10.3390/polym3042018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor Robert Weiss and his group members, Emmanuel Pitia and Nathinee Srinate, for their invaluable suggestion and assistance in the operation of the AC impedance proton fuel cell device. NN is indebted to the Fulbright scholarship for her study at the University of Akron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thein Kyu.

Additional information

Deceased—Tadatomi Nishikubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazir, N.A., Kudo, H., Nishikubo, T. et al. Impregnation of waterwheel supramolecules as proton carriers in Nafion-perfluorinated ionomer membranes. J Mater Sci 47, 7269–7279 (2012). https://doi.org/10.1007/s10853-012-6681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6681-y

Keywords

Navigation