Skip to main content

Advertisement

Log in

Capillarity in pressure infiltration: improvements in characterization of high-temperature systems

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the pressure infiltration of metal matrix composites, molten metal is injected under external pressure into a porous preform of the reinforcing material. Equilibrium capillary parameters characterizing wetting for this process are summarized in plots of metal saturation versus applied pressure, also known as drainage curves. Such curves can be measured in our laboratory during a single experiment with an infiltration apparatus designed to track the rate of metal penetration into porous preforms under conditions characteristic of metal matrix composite processing (temperatures in excess of 1000 °C and pressures in the order of 10 MPa). For such measurements to be valid, infiltration of the preform with molten metal must be mechanically quasi-static, i.e., the metal must flow at a rate sufficiently low for the metal pressure to be essentially uniform across the preform at all times. We examine this requirement quantitatively, using a finite-difference model that simulates the unsaturated unidirectional ingress of molten metal into a ceramic particle preform of finite width. We furthermore present improvements in the experimental apparatus developed in our laboratory to measure the entire drainage curve in a single experiment. We compare numerical results with new experimental data for the copper/alumina system to show (i) that pressurization rates sufficiently low for quasi-static infiltration can be produced with this apparatus, and (ii) that taking the relative permeability equal to the saturation yields better agreement with experiment than does the expression originally proposed by Brooks and Corey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eustathopoulos N, Mortensen A (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites. Butterworth-Heinemann, Stoneham, p 42

    Google Scholar 

  2. Mortensen A, Jin I (1992) Int Mater Rev 37:101.

    CAS  Google Scholar 

  3. Michaud VJ (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites. Butterworth-Heinemann, Stoneham, p 3

    Google Scholar 

  4. Lloyd DJ, Morris AD, Jin I (1991) Melt process for the production of metal matrix composite materials with enhanced particle/matrix wetting. U.S 5,028,392

  5. Mortensen A (2000) In: Clyne TW (ed) Comprehensive composite materials, vol 3. Pergamon, Oxford, p 521

    Chapter  Google Scholar 

  6. Asthana R (1998) Solidification processing of reinforced metals. Trans-Tech Publications, Uetikon-Zurich

    Google Scholar 

  7. Evans A, SanMarchi C, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  8. Michaud V, Mortensen A (2001) Compos A 32:981. doi:10.1016/S1359-835X(01)00015-X

    Article  Google Scholar 

  9. Garcia-Cordovilla C, Louis E, Narciso J (1999) Acta Mater 47(18):4461. doi:10.1016/S1359-6454(99)00318-3

    Article  CAS  Google Scholar 

  10. Chawla N, Chawla KK (2006) Metal matrix composites. Springer Verlag, New York

    Google Scholar 

  11. Adamson AW (1982) Physical chemistry of surfaces, 4th edn. Wiley, New York

    Google Scholar 

  12. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperature. Pergamon-Elsevier Science, Amsterdam

    Google Scholar 

  13. deGennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York (trans: Reisinger A)

    Google Scholar 

  14. Eustathopoulos N, Sobczak N, Passerone A, Nogi K (2005) J Mater Sci 40:2271. doi:10.1007/s10853-005-1945-4

    Article  CAS  Google Scholar 

  15. Morrow NR (1970) Ind Eng Chem 62:32. doi:10.1021/ie50726a006

    Article  CAS  Google Scholar 

  16. Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    Google Scholar 

  17. Michaud VJ, Compton L, Mortensen A (1994) Metall Trans A 25:2145. doi:10.1007/BF02652315

    Article  Google Scholar 

  18. Bahraini M, Weber L, Narciso J, Mortensen A (2005) J Mater Sci 40:2487. doi:10.1007/s10853-005-1980-1

    Article  CAS  Google Scholar 

  19. Molina JM, Narciso J, Louis E (2010) Scr Mater 62:961. doi:10.1016/j.scriptamat.2010.03.015

    Article  CAS  Google Scholar 

  20. Michaud V, Mortensen A (2007) Scr Mater 56:859. doi:10.1016/j.scriptamat.2007.02.002

    Article  CAS  Google Scholar 

  21. Mortensen A (1991) Mater Sci Eng A 135:1

    Article  Google Scholar 

  22. Kaufmann H, Mortensen A (1992) Metall Trans A 23:2071. doi:10.1007/BF02647554

    Article  Google Scholar 

  23. Dopler T, Modaressi A, Michaud VJ (2000) Metall Mater Trans B 31:225. doi:10.1007/s11663-000-0041-z

    Article  Google Scholar 

  24. Bahraini M, Molina JM, Kida M, Weber L, Narciso J, Mortensen A (2005) Curr Opin Solid State Mater Sci 9:196. doi:10.1016/j.cossms.2006.02.007

    Article  CAS  Google Scholar 

  25. Bahraini M, Molina JM, Weber L, Mortensen A (2008) Mater Sci Eng A 495:203. doi:10.1016/j.msea.2008.01.074

    Article  Google Scholar 

  26. Kida M, Bahraini M, Molina JM, Weber L, Mortensen A (2008) Mater Sci Eng A 495:197. doi:10.1016/j.msea.2007.12.050

    Article  Google Scholar 

  27. Dullien FAL (1979) Porous media, fluid transport and pore structure. Academic Press, New York

    Google Scholar 

  28. Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  29. Rodriguez A, Sanchez S, Narciso J, Louis E, Rodriguez-Reinoso F (2005) J Mater Sci 40:2519. doi:10.1007/s10853-005-1985-9

    Article  CAS  Google Scholar 

  30. Molina JM, Arpon R, Saravanan RA, GarciaCordovilla C, Louis E, Narciso J (2004) Scr Mater 51:623. doi:10.1016/j.scriptamat.2004.05.009

    Article  CAS  Google Scholar 

  31. Molina JM, Prieto R, Duarte M, Narciso J, Louis E (2008) Scr Mater 59:243. doi:10.1016/j.scriptamat.2008.03.019

    Article  CAS  Google Scholar 

  32. Molina JM, Rodriguez-Guerrero A, Bahraini M, Weber L, Narciso J, Rodriguez-Reinoso F, Louis E, Mortensen A (2007) Scr Mater 56:991. doi:10.1016/j.scriptamat.2007.01.042

    Article  CAS  Google Scholar 

  33. Brooks RH, Corey AT (1964) Hydraulic properties of porous media, 3. Colorado State University Hydrology papers

  34. Michaud VJ (2011) In: Boisse P (ed) Composite reinforcements for optimum performance. Woodhead Publishing, Oxford, p 431

    Chapter  Google Scholar 

  35. Mortensen A, Masur LJ, Cornie JA, Flemings MC (1989) Theory Metall Trans A 20:2535. doi:10.1007/BF02666688

    Article  Google Scholar 

  36. Mualem Y (1976) Water Resour Res 12(3):513. doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  37. Hunt A, Ewing R (2009) Percolation theory for flow in porous media. Springer, Heidelberg

    Google Scholar 

  38. Poirier DR, Geiger GH (1994) Transport phenomena in materials processing, 2nd edn. TMS, Warrendale

    Google Scholar 

  39. Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. Elsevier, Oxford

  40. Bahraini M (2007) Characterization of capillary forces during liquid metal infiltration, EPFL doctoral thesis 3787. Ecole Polytechnique Fédérale de Lausanne, Lausanne

  41. Higbie J (1991) Am J Phys 59:184

    Article  Google Scholar 

  42. Sahimi M (1993) Rev Mod Phys 65:1393. doi:10.1103/RevModPhys.65.1393

    Article  Google Scholar 

  43. Gouyet JF (1996) Physics and fractal structures. Masson, Paris and Springer, New York

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Swiss National Science Foundation, Project No. 200020-137685. The authors wish to express their gratitude to Prof. Véronique Michaud and Dr. Alain Jacot, both of EPFL, for their assistance and advice concerning the simulation part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Léger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Léger, A., Calderon, N.R., Charvet, R. et al. Capillarity in pressure infiltration: improvements in characterization of high-temperature systems. J Mater Sci 47, 8419–8430 (2012). https://doi.org/10.1007/s10853-012-6645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6645-2

Keywords

Navigation