Skip to main content
Log in

Electron trapping at the lattice Ti atoms adjacent to the Nb dopant in Nb-doped rutile TiO2

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Nb-doped anatase TiO2 is considered one of the most promising alternative transparent conducting oxides to substitute for indium tin oxide. However, studies have found that the conductivity emerges only in the anatase form, not in the rutile form. We applied the first-principle band structure method for the Nb-doped TiO2 in both polymorphs. The calculation was carried out using the spin-restricted and spin-polarized GGA+U level of the theory. Special care was taken in the calibration of +U parameters to satisfy the generalized Koopman’s theorem. A significant difference was found between the spin-polarized and spin-restricted calculations. We noticed that spin polarization was necessary to reproduce the electron trapping in rutile. In addition, electrons are trapped at two lattice Ti atoms adjacent to the NbTi dopant along the [001] direction, as described with the formal charge state of Ti3.5+–Nb5+–Ti3.5+. A careful convergence of the electron trapping character was conducted against the unit cell size based on the Bader population analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamisaka H, Yamashita K (2009) In: Vayssieres L (ed) On solar hydrogen & nanotechnology. Wiley, Singapore, p 37

    Google Scholar 

  2. Facchetti A, Marks T (eds) (2010) Transparent electronics: from synthesis to applications. Wiley, West Sussex

    Google Scholar 

  3. Hosono H, Paine DC, Ginley DS (eds) (2010) Handbook of transparent conductors. Springer, New York

    Google Scholar 

  4. Hamberg I, Granqvist CG (1986) J Appl Phys 60:R123

    Article  CAS  Google Scholar 

  5. Taylor SR, McLennan SM (1995) Rev Geophys 33:241

    Article  Google Scholar 

  6. Tsuda N, Nasu K, Fujimori A, Siratori K (1993) Electronic conduction in oxides, 2nd edn. Shokabo, Tokyo

    Google Scholar 

  7. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 291:854

    Article  CAS  Google Scholar 

  8. Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T (2005) Appl Phys Lett 86:252101

    Article  Google Scholar 

  9. Furubayashi Y, Hitosugi T, Hasegawa T (2006) Appl Phys Lett 88:226103

    Article  Google Scholar 

  10. Hitosugi T, Ueda A, Nakao S, Yamada N, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T (2007) Appl Phys Lett 90:212106

    Article  Google Scholar 

  11. Hirose Y, Yamada N, Nakao S, Hitosugi T, Shimada T, Hasegawa T (2009) Phys Rev B 79:165108

    Article  Google Scholar 

  12. Weijtens CHL, Van Loon PAC (1991) Thin Solid Films 196:1

    Article  CAS  Google Scholar 

  13. Brewer SH, Franzen S (2004) Chem Phys 300:285

    Article  CAS  Google Scholar 

  14. Ederth J, Hultåker A, Nikalasson GA, Heszler P, Van Doorn AR, Jongerius MJ, Burgard D, Granqvist CG (2005) Appl Phys A 81:1363

    Article  CAS  Google Scholar 

  15. Ellmer K, Mientus R (2008) Thin Solid Films 516:4620

    Article  CAS  Google Scholar 

  16. Tuna O, Selamet Y, Aygun G, Ozyuzer L (2010) J Phys D 43:055402

    Article  Google Scholar 

  17. Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M, Hitosugi T, Shimada T, Hasegawa T (2007) J Appl Phys 101:093705

    Article  Google Scholar 

  18. Yamada N, Hitosugi T, Kasai J, Hoang NLH, Nakao S, Hirose Y, Shimada T, Hasegawa T (2009) J Appl Phys 105:123702

    Article  Google Scholar 

  19. Yamada N, Hitosugi T, Kasai J, Hoang NLH, Nakao S, Hirose Y, Shimada T, Hasegawa T (2010) Thin Solid Films 518:3101

    Article  CAS  Google Scholar 

  20. Bellingham JR, Phillips WA, Adkins CJ (1992) J Mater Sci Lett 11:263.

    Article  CAS  Google Scholar 

  21. Mergel D, Qiao Z (2004) J Appl Phys 95:5608

    Article  CAS  Google Scholar 

  22. Kamisaka H, Hitosugi T, Yamashita K (2010) J Surf Sci Soc Jpn 31:343

    Article  CAS  Google Scholar 

  23. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  24. Deskins NA, Dupuis M (2007) Phys Rev B 75:195212

    Article  Google Scholar 

  25. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  26. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  27. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  28. Batista ER, Heyd J, Hennig RG, Uberuaga BP, Martin RL, Scuseria GE, Umrigar CJ, Wilkins JW (2006) Phys Rev B 74:121102

    Article  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Article  CAS  Google Scholar 

  32. Hamada H (2004) Kotai Butsuri 39:743

    CAS  Google Scholar 

  33. Di Valentin C, Pacchioni G, Selloni A (2009) J Phys Chem C 113:20543

    Article  Google Scholar 

  34. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105

    Article  Google Scholar 

  35. Janotti A, Segev D, Van de Walle CG (2006) Phys Rev B 74:045202

    Article  Google Scholar 

  36. Morgan BJ, Watson GW (2009) Phys Rev B 80:233102

    Article  Google Scholar 

  37. Park S-G, Magyari-Köpe B, Nishi Y (2010) Phys Rev B 82:115109

    Article  Google Scholar 

  38. Janotti A, Varley JB, Rinke P, Umezawa N, Kresse G, Van de Walle CG (2010) Phys Rev B 81:085212

    Article  Google Scholar 

  39. Mattioli G, Filippone F, Alippi P, Bonapasta AA (2008) Phys Rev B 78:241201

    Article  Google Scholar 

  40. Stausholm-Møller J, Kristoffersen HH, Hinnemann B, Madsen GKH, Hammer B (2010) J Chem Phys 133:144708

    Article  Google Scholar 

  41. Osorio-Guillén J, Lany S, Zunger A (2008) Phys Rev Lett 100:036601

    Article  Google Scholar 

  42. Morgan BJ, Scanlon DO, Watson GW (2009) J Mater Chem 19:5175

    Article  CAS  Google Scholar 

  43. Orita N (2010) Jpn J Appl Phys 49:055801

    Article  Google Scholar 

  44. Huy HA, Aradi B, Frauenheim T, Deák P (2011) Phys Rev B 83:155201

    Article  Google Scholar 

  45. Orita N (2011) Jpn J Appl Phys 50:041102

    Article  Google Scholar 

  46. Deák P, Aradi B, Frauenheim T (2011) Phys Rev B 83:155207

    Article  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  48. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  49. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  50. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  51. Lany S (2011) In: Alkauskas A, Deák P, Neugebauer J, Pasquarello A, Van de Walle CG (eds) Advanced calculations for defects in materials. Wiley-VCH, Weinheim, p 183

    Chapter  Google Scholar 

  52. Ihm J, Zunger A, Cohen ML (1979) J Phys C 12:4409

    Article  CAS  Google Scholar 

  53. Laks DB, Van de Walle CG, Neumark GF, Blöchl PE, Pantelides ST (1992) Phys Rev B 45:10965

    Article  CAS  Google Scholar 

  54. Persson C, Zhao Y-J, Lany S, Zunger A (2005) Phys Rev B 72:035211

    Article  Google Scholar 

  55. Lany S, Zunger A (2008) Phys Rev B 78:235104

    Article  Google Scholar 

  56. Kamisaka H, Yamashita K (2011) J Phys Chem C 115:8265

    Article  CAS  Google Scholar 

  57. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354

    Article  Google Scholar 

  58. Kresse G, Hafner J (1993) Phys Rev B 47:RC558

    Article  Google Scholar 

  59. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  60. Momma K, Izumi F (2008) J Appl Crystallogr 41:653

    Article  CAS  Google Scholar 

  61. Shriver DF, Atkins PW, Langford CH (1990) Inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  62. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414

    Article  Google Scholar 

  63. Lindan PJD, Harrison NM, Gillan MJ, White JA (1997) Phys Rev B 55:15919

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Elements Science and Technology Project and the Global COE program “Chemical Innovation” of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors thank Dr Chikamatsu, Prof. T. Hitosugi, Prof. T. Hasegawa, Prof. A. Selloni, and Prof. S.-H. Wei for their advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideyuki Kamisaka or Koichi Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamisaka, H., Mizuguchi, N. & Yamashita, K. Electron trapping at the lattice Ti atoms adjacent to the Nb dopant in Nb-doped rutile TiO2 . J Mater Sci 47, 7522–7529 (2012). https://doi.org/10.1007/s10853-012-6491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6491-2

Keywords

Navigation