Skip to main content
Log in

Mechanical behavior of a cellular composite under quasi-static, static, and cyclic compression loading

  • Syntactic & Composite Foams
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The quasi-static, static, and cyclic compressive behavior of a novel epoxy matrix cellular composite reinforced with glass foam granules is investigated. Three different grain-size fractions of the granules are used: 0.5–1, 1–2, and 2–4 mm. The density of the cellular composite varies between 0.65 and 0.82 g/cm³. The material exhibits high specific compressive strength and stiffness within the class of cellular materials; these properties can be varied using appropriate size of granules. The glass foam granules increase the stiffness of the cellular composite compared to neat epoxy foam with the same weight. The measured elastic properties are in good agreement with results obtained from analytical and numerical homogenization methods. The fatigue behavior is determined in static tests and in cyclic tests at 1 and 20 Hz on one type of cellular composite. The fatigue process for cyclic loading is a result of an interaction between static and cyclic damage. The sensitivity to static damage is found to be higher than to cyclic damage. The damage behavior is investigated by evaluation specimen’s stiffness and using scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gibson LJ, Ashby MF (1997) Cellular solids—structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  2. Mills N (2007) Polymer foams handbook: engineering and biomechanics applications and design guide. Butterworth-Heinemann, Burlington

    Google Scholar 

  3. Luxmoore AR, Owen DRJ (1982) In: Hilyard NC (ed) Mechanics of cellular plastics. Applied Science Publishers, London

    Google Scholar 

  4. Plummer JF (1993) In: Lee SM (ed) Handbook of composite reinforcements. VCH, New York

    Google Scholar 

  5. Shutov FA (1986) Adv Polym Sci 73:63

    Article  Google Scholar 

  6. Bunn P, Mottram JT (1993) Compos 24:565

    Article  CAS  Google Scholar 

  7. Ozcivici E, Singh RP (2005) MRS Symp Proceedings

  8. Balch DK, O’Dwyer JG, Davis GR, Cady CM, Gray III, Dunand DC (2005) Mater Sci Eng, A 391:408

    Article  Google Scholar 

  9. Puterman M, Narkis M, Kenig S (1980) J Cell Plast 16:223

    Article  CAS  Google Scholar 

  10. Hiel C, Dittman D, Ishai O (1993) Composites 24:447

    Article  Google Scholar 

  11. Keller LB (1968) J Cell Plast 4:418

    Article  CAS  Google Scholar 

  12. Klaus H, Huber O, Kuhn G (2005) Adv Eng Mater 7:1117

    Article  CAS  Google Scholar 

  13. Huber O, Klaus H, Dallner R, Bartl F, Eigenfeld K, Kovacs B, Godehardt M (2006) Druckguss-Praxis 1:19

    Google Scholar 

  14. Huber O, Klaus H (2006) Leichtbau-Formteil mit Stützkern und entsprechendes Herstellungsverfahren. German patent DE102006056167B4

  15. Huber O, Klaus H (2009) Mater Lett 63:1117

    Article  CAS  Google Scholar 

  16. Bartl F, Klaus H, Dallner R, Huber O (2009) Int J Impact Eng 36:667

    Article  Google Scholar 

  17. Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, Chichester

    Google Scholar 

  18. Sauer JA, Richardson GC (1981) Int J Fracture 16:499

    Article  Google Scholar 

  19. Gurney C, Pearson S (1948) P Roy Soc Lond A Mat 192:537

    Article  Google Scholar 

  20. Charles RJ (1958) J Appl Phys 29:1549

    Article  CAS  Google Scholar 

  21. Gurney C, Pearson S (1949) Proc Phys Soc B 62:469

    Article  Google Scholar 

  22. Conley PH, Chandan HC, Bradt RC (1978) In: Bradt RC et al (eds) Fracture mechanics of ceramics, vol IV. Plenum, New York

    Google Scholar 

  23. Adams R, McMillan PW (1977) J Mater Sci 12:643. doi:10.1007/BF00548153

    Article  CAS  Google Scholar 

  24. Klaus H (2007) Charakterisierung, Modellierung und Anwendung zellularer Verbundwerkstoffe im elasto-plastischen Bereich. Dissertation, University of Erlangen-Nuremberg, Germany, ISBN 978-3-18-331318-1

  25. Sugimura Y, Rabiei A, Evans AG, Harte AM, Fleck NA (1999) Mat Sci Eng A 269:38

    Article  Google Scholar 

  26. Mori T, Tanaka K (1973) Acta Metall Mater 21:571

    Article  Google Scholar 

  27. Diel S, Hartmann M, Huber O (2010) In: Proceedings of the ANSYS Conference & 28. CADFEM Users’ Meeting, Aachen, Germany

  28. Eshelby JD (1957) P Roy Soc Lond A Mat 241:367

    Article  Google Scholar 

  29. Gross D, Seelig T (2007) Bruchmechanik: Mit einer Einführung in die Mikromechanik. Springer, Berlin

    Google Scholar 

  30. Bardella L, Genna F (2001) Int J Solids Struct 38:7235

    Article  Google Scholar 

  31. Öchsner A, Winter W, Kuhn G (2001) Technische Mechanik 21:101

    Google Scholar 

  32. Lemaitre J (1996) A course on damage mechanics. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This research is kindly supported by the Bavarian State Ministry of Sciences, Research and the Arts within the funding program “Förderung der angewandten Forschung und Entwicklung an Hochschulen für angewandte Wissenschaften”. Dennert Poraver GmbH is acknowledged for supplying the glass foam granules. The authors thank Wolfgang Rohrmeier for preparing the specimens, Ursula Smolorz for her help in creating SEM images and Sonja Waldherr-Rummel for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Diel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diel, S., Huber, O., Saage, H. et al. Mechanical behavior of a cellular composite under quasi-static, static, and cyclic compression loading. J Mater Sci 47, 5635–5645 (2012). https://doi.org/10.1007/s10853-012-6432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6432-0

Keywords

Navigation