Skip to main content
Log in

Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hot deformation behavior of Ti-15-3 titanium alloy was investigated by hot compression tests conducted in the temperature range 850–1150 °C and strain rate range 0.001–10 s−1. Using the flow stress data corrected for deformation heating, the activation energy map, processing maps and Zener–Hollomon parameter map were developed to determine the optimum hot-working parameters and to investigate the effects of strain rate and temperature on microstructural evolution of this material. The results show that the safe region for hot deformation occurs in the strain rate range 0.001–0.1 s−1 over the entire temperature range investigated. In this region, the activation energy is ~240 ± 5 kJ/mol and the ln Z values vary in range of 13.9–21 s−1. Stable flow is associated with dynamic recovery and dynamic recrystallization. Also, flow instabilities are observed in the form of localized slip bands and flow localization at strain rates higher than 0.1 s−1 over a wide temperature range. The corresponding ln Z values are larger than 21 s−1. The hot deformation characteristic of Ti-15-3 alloy predicted from the processing maps, activation energy map, and Zener–Hollomon parameter map agrees well with the results of microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Roger R, Collings EW, Welsch G (1993) Materials properties handbook: titanium alloys. ASM International, Materials Park

    Google Scholar 

  2. Weiss I, Semiatin SL (1998) Mater Sci Eng A 243:46

    Article  Google Scholar 

  3. Semiatin SL, Seetharaman V, Weiss I (1998) Mater Sci Eng A 243:1

    Article  Google Scholar 

  4. McQueen HJ, Jonas JJ (1984) J Appl Metalwork 3:233

    Article  CAS  Google Scholar 

  5. Liu Y, Baker TN (1995) Mater Sci Eng A 197:125

    Article  Google Scholar 

  6. Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon J-P (2005) Mater Sci Eng A 396:50

    Article  Google Scholar 

  7. Furuhara T, Poorganji B, Abe H, Maki T (2007) JOM 59:64

    Article  CAS  Google Scholar 

  8. Wanjara P, Jahazi M, Monajati H, Yue S (2006) Mater Sci Eng A 416:300

    Article  Google Scholar 

  9. Malas JC, Venugopal S, Seshacharyulu T (2004) Mater Sci Eng A 368:41

    Article  Google Scholar 

  10. Monmeni A, Dehghani K (2010) Mater Sci Eng A 527:5467

    Article  Google Scholar 

  11. Balasubrahmanyam VV, Prasad YVRK (2002) Mater Sci Eng A 336:150

    Article  Google Scholar 

  12. Balasubrahmanyam VV, Prasad YVRK (2001) Mater Sci Technol 17:1222

    CAS  Google Scholar 

  13. Malas JC (1991) Dissertation, Ohio University

  14. Slooff FA, Dzwonczyk JS, Zhou J, Duszczyk J, Katgerman L (2010) Mater Sci Eng A 527:735

    Article  Google Scholar 

  15. Samantaray D, Mandal S, Bhaduri AK (2011) Mater Sci Eng A 528:5204

    Article  CAS  Google Scholar 

  16. Wang ZH, Fu WT, Wang BZ, Zhang WH, Lv ZQ, Jiang P (2010) Mater Charact 61:25

    Article  CAS  Google Scholar 

  17. Jiang P, Fu WT, Wang ZH, Bai XH, Zhao XC, Lv ZQ (2011) J Mater Sci 46:4654. doi:10.1007/s10853-011-5371-5

    Article  CAS  Google Scholar 

  18. Li Y, Liu ZY, Lin LH, Peng JT, Ning AL (2011) J Mater Sci 46:3708. doi:10.1007/s10853-010-5143-7

    Article  CAS  Google Scholar 

  19. Morakabati M, Kheirandish Sh, Aboutalebi M, KarimiTaheri A, Abbasi SM (2011) Mater Sci Eng A 528:5656

    Article  CAS  Google Scholar 

  20. Zou DN, Han Y, Yan DN, Wang D, Zhang W, Fan GW (2011) Mater Des 32:4443

    Article  CAS  Google Scholar 

  21. Philippart I, Rack HJ (1998) Mater Sci Eng A 243:196

    Article  Google Scholar 

  22. Srinivasan R (1992) Scr Metall Mater 27:925

    Article  CAS  Google Scholar 

  23. Li MQ, Pan HS, Lin YY, Luo J (2007) J Mater Process Technol 183:71

    Article  CAS  Google Scholar 

  24. Bruschi S, Poggio S, Tata ME (2004) Mater Lett 58:3622

    Article  CAS  Google Scholar 

  25. Niu Y, Hou HL, Li MQ, Li ZQ (2008) Mater Sci Eng A 492:24

    Article  Google Scholar 

  26. Goetz RL, Semiatin SL (2001) J Mater Eng Perform 10:710

    Article  CAS  Google Scholar 

  27. Castellanos J, Rieiro I, Carsí M, Larrea MT, Ruano OA (2010) J Mater Sci 45:5522. doi:10.1007/s10853-010-4610-5

    Article  CAS  Google Scholar 

  28. Gil FJ, Guilemany JM, Fernández J (1998) Mater Sci Eng A 241:114

    Article  Google Scholar 

  29. Sellars CM, McTegart WJ (1966) Acta Metall 14:1136

    Article  CAS  Google Scholar 

  30. Suzuki H, Fujii H (1991) ISIJ Int 31:814

    Article  CAS  Google Scholar 

  31. Montheillet F, Dajno D, Come N, Gautier E, Simon A, Audrerie P et al (1993) In: Froes FH, Caplan I (eds) Titanium’92: science and technology. TMS, Warrendale, PA, p 1347

    Google Scholar 

  32. Prasad YVRK (1996) Metall Mater Trans A 27:235

    Article  Google Scholar 

  33. Murty SVSN, Rao BN (1998) Mater Sci Eng A 254:76

    Article  Google Scholar 

  34. Murty SVSN, Rao BN (1999) J Mater Sci Lett 18:677

    Article  CAS  Google Scholar 

  35. Montheillet F, Jonas JJ, Neale KW (1996) Metall Mater Trans A 27:232

    Article  Google Scholar 

  36. Tan MJ, Zhu XJ, Thiruvarudchelvan S, Liew KM (2007) Arch Mater Sci Eng 28:717

    Google Scholar 

  37. Wusatowska-Sarnek AM, Miura H, Sakai T (2002) Mater Sci Eng A 232:177

    Google Scholar 

  38. Sun Y, Zeng WD, Zhao YQ, Zhang XM, Shu Y, Zhou YG (2011) Mater Sci Eng A 232:1205

    Google Scholar 

  39. Philippart I, Rack HJ (1998) Mater Sci Eng A 254:253

    Article  Google Scholar 

  40. Ziegler H (1965) In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol 4. Wiley, New York, p 91

    Google Scholar 

  41. Kumar AKSK (1987) Dissertation, Indian Institute of Science

  42. Prasad YVRK (1990) Indian J Technol 28:435

    CAS  Google Scholar 

  43. Ma X, Zeng WD, Sun Y, Zhao YQ, Wang SL, Zhou YG (2010) Rare Metal Mater Eng 39:756

    Article  CAS  Google Scholar 

  44. Lütjering G, Williams JC (2003) Titanium. Springer, New York

    Google Scholar 

  45. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

  46. Zener C, Hollomon H (1994) J Appl Phys 15:22

    Article  Google Scholar 

  47. Zhang MJ, Li FG, Wang SY, Liu CY (2010) Mater Sci Eng A 527:6771

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from National Program on Key Basic Research Project (973 Program) (No. 2011CB606306-2). One of the authors, Jingqi Zhang, is also grateful to Dr. S.V.S. Narayana Murty of Vikram Sarabhai Space Centre (India) for his valuable discussions on the processing map approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshuang Di.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Di, H., Wang, H. et al. Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. J Mater Sci 47, 4000–4011 (2012). https://doi.org/10.1007/s10853-012-6253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6253-1

Keywords

Navigation