Skip to main content

Advertisement

Log in

Structure of multilayer ZrO2/SrTiO3

  • E-MRS MACAN
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multilayered oxide heteroepitaxial systems, including that of a 1-nm-thick Y2O3-stabilised ZrO2 (YSZ) sandwiched between layers of SrTiO3 (STO) [1], have been a subject of much interest lately due to their significantly enhanced ionic conductivities as compared to the bulk materials. We aim to provide the foundation for understanding this increase in conductivity by considering the atomic configurations at the interfaces of such systems, specifically a ZrO2/STO multilayer system. Possible stable lattice structures of pure ZrO2 in the system are explored using a genetic algorithm in which the interatomic interactions are modelled by simple pair potentials. The energies of several of the more stable of these structures are then evaluated more accurately within density functional theory (DFT). We find that the fluorite ZrO2 phase is unstable as a coherently strained epitaxial layer in the multilayer system. Instead, anatase-, columbite-, rutile-, and pyrite-like ZrO2 epitaxies are found to be more stable, with the anatase-like epitaxy being the most stable structure over a wide range of chemical potential of the components. We also find a high energy metastable structure resembling the tetragonal fluorite structure which is predicted by DFT to be stabilised by SrO-terminated STO but not by TiO2-terminated STO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Science 321(5889):676

    Article  CAS  Google Scholar 

  2. Fabbri E, Pergolesi D, Traversa E (2010) Sci Technol Adv Mat 11(5):054503

    Article  Google Scholar 

  3. Guo X, Maier J (2009) Adv Mater 21(25–26):2619

    Article  CAS  Google Scholar 

  4. Guo X (2010) Scripta Mater 58(4):1361–1368

    Google Scholar 

  5. Sata N, Eberman K, Eberl K, Maier J (2000) Nature 408(6815):946

    Article  CAS  Google Scholar 

  6. Ohtomo A, Hwang HY (2004) Nature 427(6973):423

    Article  CAS  Google Scholar 

  7. Korte C, Schichtel N, Hesse D, Janek J (2009) Monatshefte für Chemie/Chem Mon 140(9):1069

    Article  CAS  Google Scholar 

  8. Schichtel N, Korte C, Hesse D, Janek J (2009) Phys Chem Chem Phys 11(17):3043

    Article  CAS  Google Scholar 

  9. Cavallaro A, Burriel M, Roqueta J, Apostolidis A, Bernardi A, Tarancón A, Srinivasan R, Cook SN, Fraser HL, Kilner JA, McComb DW, Santiso J (2010) Solid State Ion 181(13–14):592

    Article  CAS  Google Scholar 

  10. Kushima A, Yildiz B (2010) J Mater Chem 20(23):4809

    Article  CAS  Google Scholar 

  11. Pennycook TJ, Beck MJ, Varga K, Varela M, Pennycook SJ, Pantelides ST (2010) Phys Rev Lett 104(11):115901

    Article  Google Scholar 

  12. Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58(7):3641

    Article  CAS  Google Scholar 

  13. Králik B, Chang EK, Louie SG (1998) Phys Rev B 57(12):7027

    Article  Google Scholar 

  14. Chua ALS, Benedek NA, Chen L, Finnis MW, Sutton AP (2010) Nat Mater 9(5):418

    Article  CAS  Google Scholar 

  15. McCoy MA, Grimes RW, Lee WE (1997) Philos Mag A 75(3):833

    Article  CAS  Google Scholar 

  16. Benedek NA, Chua ALS, Elsasser C, Sutton AP, Finnis MW (2008) Phys Rev B 78(6):064110

    Article  Google Scholar 

  17. Zacate MO, Minervini L, Bradfield DJ, Grimes RW, Sickafus KE (2000) Solid State Ion 128(1–4):243

    Article  CAS  Google Scholar 

  18. Minervini L, Grimes RW, Sickafus KE (2000) J Am Ceram Soc 83(8):1873

    Article  CAS  Google Scholar 

  19. Schelling PK, Phillpot SR, Wolf D (2001) J Am Ceram Soc 84(7):1609

    Article  CAS  Google Scholar 

  20. Catlow CRA (1986) Annu Rev Mater Sci 16:517

    Article  CAS  Google Scholar 

  21. Finnis MW, Paxton AT, Methfessel M, van Schilfgaarde M (1998) Phys Rev Lett 81(23):5149

    Article  CAS  Google Scholar 

  22. Fabris S, Paxton AT, Finnis MW (2000) Phys Rev B 61(10):6617

    Article  CAS  Google Scholar 

  23. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, ProbertMJ Refson K, Payne MC (2005) Zeitschrift für Kristallographie 220(5–6):567

    Article  CAS  Google Scholar 

  24. Broyden CG (1970) IMA J Appl Math 6(3):222

    Article  Google Scholar 

  25. Fletcher R (1970) Comput J 13(3):317

    Article  Google Scholar 

  26. Goldfarb D (1970) Math Comput 24(109):23

    Article  Google Scholar 

  27. Shanno D (1970) Math Comput 24:647

    Article  Google Scholar 

  28. Cavallaro A, Ballesteros B, Bachelet R, Santiso J (2011) Cryst Eng Commun 13(5):1625

    Article  CAS  Google Scholar 

  29. VanDer Merwe JH (1963) J Appl Phys 34(1):123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank David W. McComb for useful discussions. The calculations were performed on the Imperial College High Performance Computing Service facilities as well as HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd. at the University of Edinburgh, Cray Inc. and NAG Ltd., and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. This study is funded by the Agency for Science, Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li Cheah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheah, W.L., Finnis, M.W. Structure of multilayer ZrO2/SrTiO3 . J Mater Sci 47, 1631–1640 (2012). https://doi.org/10.1007/s10853-011-5985-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5985-7

Keywords

Navigation