Skip to main content
Log in

Microstructural engineering of ZnO-based varistor ceramics

  • E-MRS MACAN
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In ceramic materials, special boundaries play the key role in crystal growth. They introduce an abrupt structural and chemical anisotropy, which is readily reflected in an unusual microstructure evolution, whereas their local structure affects the physical properties of polycrystalline materials. These effects, however, can be exploited to tailor the electronic and optical properties of the materials, as demonstrated in this review. The presented topic is related to a preparatory stage of phase transformations, manifested through the evolution of chemically induced structural faults. In non-centrosymmetric structure of ZnO, inversion boundaries (IBs) are the most common type of planar faults that is triggered by the addition of the specific IB-forming dopants (Sb2O3, SnO2, TiO2). In addition to conventional TEM techniques, new methods were developed to resolve crystallography and atomic-scale chemistry of IBs. The absolute orientation of the polar c-axes on both sides of an IB was determined by micro-diffraction, providing the most reliable identification of crystal polarity in non-centrosymmetric crystals. To determine sub-monolayer quantities of dopants on the IB, we developed a special technique of analytical electron microscopy using concentric electron probe (CEP) in EDS or EELS mode, providing more accurate and precise results than any other technique. Knowing the local crystal chemistry of IBs, we were able to design experiments to identify their formation mechanism. IBs nucleate in the early stage of grain growth as a dopant-rich topotaxial 2D reaction product on Zn-terminated surfaces of ZnO grains. Soon after their nucleation, ZnO is epitaxially grown on the inherent 2D phase in an inverted orientation, which effectively starts to dictate anisotropic growth of the infected crystallite. In very short time, the grains with IBs dominate the entire microstructure via IB-induced exaggerated grain growth mechanism. This phenomenon was used to design physical properties of ZnO-based varistor ceramics, whereas the bottom-up approach demonstrated here provides the basic tool for microstructural engineering of functional materials in virtually any system that is prone to the formation of special boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matsuoka M (1971) J Appl Phys 10:736

    Article  CAS  Google Scholar 

  2. Inada M (1978) Jpn J Appl Phys 17:1

    Article  CAS  Google Scholar 

  3. Gupta TK (1990) J Am Ceram Soc 73:1817

    Article  CAS  Google Scholar 

  4. Clarke DR (1999) J Am Ceram Soc 82:485

    Article  CAS  Google Scholar 

  5. Stucki F, Greuter F (1990) Appl Phys Lett 57:446

    Article  CAS  Google Scholar 

  6. Ramírez MA, Simões AZ, Bueno PR, Márquez MA, Orlandi MO, Varela JA (2006) J Mater Sci 41:6221. doi:10.1007/s10853-006-0589-3

    Article  Google Scholar 

  7. Ramírez MA, Simões AZ, Márquez MA, Maniette Y, Cavalheiro AA, Varela JA (2007) Mater Res Bull 42:1159

    Article  Google Scholar 

  8. Kutty TRN, Ezhilvalavan S (1994) Mater Chem Phys 38:267

    Article  CAS  Google Scholar 

  9. Rahaman MN, Lutgard CJ, James AV, Tuttle BA (1990) J Mater Sci 25:737. doi:10.1007/BF00714102

    Article  CAS  Google Scholar 

  10. Kobayashi KI, Wada O, Kobayashi M, Takada Y (1998) J Am Ceram Soc 81:2071

    Article  CAS  Google Scholar 

  11. Luo J, Wang H, Chiang YM (1999) J Am Ceram Soc 82:916

    Article  CAS  Google Scholar 

  12. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New York, p 460

    Google Scholar 

  13. Kim J, Kimura T, Yamaguchi T (1989) J Mater Sci 24:2581. doi:10.1007/BF01174529

    Article  CAS  Google Scholar 

  14. Senda T, Bradt RC (1991) J Am Ceram Soc 74:1296

    Article  CAS  Google Scholar 

  15. Ito M, Tanahashi M, Uehara M, Iga A (1997) Jpn J Appl Phys 36:L1460

    Article  CAS  Google Scholar 

  16. Hennings DFK, Hartung R, Reijnen PJL (1990) J Am Ceram Soc 73:645

    Article  CAS  Google Scholar 

  17. Makovec D, Kolar D, Trontelj M (1993) Mater Res Bull 28:803

    Article  CAS  Google Scholar 

  18. Zhang CC, Zhou DX, Lu WZ, Hu YX (2001) J Mater Sci 12:357. doi:10.1023/A:1011245624525

    CAS  Google Scholar 

  19. Bernik S, Daneu N, Rečnik A (2004) J Eur Ceram Soc 24:3703

    Article  CAS  Google Scholar 

  20. Daneu N, Rečnik A, Bernik S, Kolar D (2000) J Am Ceram Soc 83:3165

    Article  CAS  Google Scholar 

  21. Bernik S, Daneu N (2001) J Eur Ceram Soc 21:1879

    Article  CAS  Google Scholar 

  22. Nunes SI, Bradt RC (1995) J Am Ceram Soc 78:2469

    Article  CAS  Google Scholar 

  23. Bruley J, Bremer U, Kraševec V (1991) J Am Ceram Soc 75:3127

    Article  Google Scholar 

  24. Makovec D, Trontelj M (1994) J Am Ceram Soc 77:1202

    Article  CAS  Google Scholar 

  25. Rečnik A, Daneu N, Walther T, Mader W (2001) J Am Ceram Soc 84:2675

    Google Scholar 

  26. Mader W, Rečnik A (1998) Phys Stat Sol (a) 166:381

    Article  CAS  Google Scholar 

  27. Haskell BA, Souri SJ, Helfand MA (1999) J Am Ceram Soc 82:2106

    Article  CAS  Google Scholar 

  28. Walther T, Daneu N, Rečnik A (2004) Interface Sci 12:267

    Article  CAS  Google Scholar 

  29. Walther T (2004) J Microsc 215:191

    Article  CAS  Google Scholar 

  30. Yamazaki T, Nakanishi N, Rečnik A, Kawasaki M, Watanabe K, Čeh M, Shiojiri M (2004) Ultramicroscopy 98:305

    Article  CAS  Google Scholar 

  31. Walther T, Wolf F, Rečnik A, Mader W (2006) Int J Mater Res 97:934

    CAS  Google Scholar 

  32. Pauling L (1940) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  33. Gehman WG, Austerman SB (1965) Acta Crystallogr 18:375

    Article  CAS  Google Scholar 

  34. Rečnik A, Daneu N, Bernik S (2007) J Eur Ceram Soc 27:1999

    Article  Google Scholar 

  35. Tomlins GW, Routbort JL, Mason TO (2000) J Appl Phys 87:117

    Article  CAS  Google Scholar 

  36. Dulub O, Diebold U, Kresse G (2003) Phys Rev Lett 90:016102

    Article  Google Scholar 

  37. Hörlin T, Svensson G, Olson E (1998) J Mater Chem 8:2465

    Article  Google Scholar 

  38. Wolf F, Freitag BH, Mader W (2007) Micron 38:549

    Article  CAS  Google Scholar 

  39. Köster-Scherger O, Schmid H, Vanderschäge N, Wolf F, Mader W (2007) J Am Ceram Soc 90:3984

    Google Scholar 

  40. Barf J, Walther T, Mader W (2004) Interface Sci 12:213

    Article  CAS  Google Scholar 

  41. Rečnik A, Čeh M, Kolar D (2001) J Eur Ceram Soc 21:2117

    Article  Google Scholar 

  42. Kolar D, Kunaver U, Rečnik A (1998) Phys Stat Sol (a) 166:219

    Article  CAS  Google Scholar 

  43. Šturm S, Rečnik A, Čeh M (2001) J Eur Ceram Soc 21:2141

    Article  Google Scholar 

  44. Daneu N, Rečnik A, Bernik S (2003) J Am Ceram Soc 86:1379

    Article  CAS  Google Scholar 

  45. Daneu N, Rečnik A, Bernik S (2011) J Am Ceram Soc 94:1619

    Article  CAS  Google Scholar 

  46. Lee JS, Wiederhorn SM (2004) J Am Ceram Soc 87:1319

    Article  CAS  Google Scholar 

  47. Bernik S, Podlogar M, Daneu N, Rečnik A (2007) Mat Sci Forum 558(559):857

    Article  Google Scholar 

  48. Bernik S, Bernard J, Daneu N, Rečnik A (2007) J Am Ceram Soc 90:3239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by the national research project J2-6453-0106-04: “Nanostructural engineering of semiconducting materials”. The support of the FP7-NMP-2008-CSA-2 project: “Merging atomistic and continuum analysis of nanometer length-scale” (MACAN) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Rečnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rečnik, A., Bernik, S. & Daneu, N. Microstructural engineering of ZnO-based varistor ceramics. J Mater Sci 47, 1655–1668 (2012). https://doi.org/10.1007/s10853-011-5937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5937-2

Keywords

Navigation