Skip to main content
Log in

Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoparticles of palladium-doped cerium oxide (Pd–CeO2) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson–Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO2 in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO2 lattice inhibits the growth of the 6% Pd–CeO2 particles compared to pure CeO2 between 600 and 850 °C. Activation energies for grain growth of 54 ± 7 and 79 ± 8 kJ/mol were determined for 6% Pd–CeO2 and pure CeO2, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

TWC:

Three-way catalyst

Ceria:

Cerium oxide

Zirconia:

Zirconium oxide

PGM:

Platinum group metals

HMT:

Hexamethylenetetramine

ICP–OES:

Ion-coupled plasma/optical emission spectrometry

FWHM:

Full-width at half-maximum

CCD:

Charge coupled device

TEM:

Transmission electron microscopy

HRTEM:

High resolution transmission electron microscopy

BNL:

Brookhaven National Laboratory

XANES:

X-ray absorption near edge spectroscopy

I.C.D.D.:

International Centre for Diffraction Data

E a :

Activation energy

References

  1. Han WQ, Wen W, Hanson JC, Teng XW, Marinkovic N, Rodriguez JA (2009) J Phys Chem C 113(52):21949. doi:10.1021/jp9066444

    Article  CAS  Google Scholar 

  2. Wang XH, Lu GZ, Guo Y, Jiang LZ, Guo YL, Li CZ (2009) J Mater Sci 44(5):1294. doi:10.1007/s10853-009-3275-4

    Article  CAS  Google Scholar 

  3. Gorte RJ (2010) AIChE J 56(5):1126. doi:10.1002/aic.12234

    CAS  Google Scholar 

  4. Gorte RJ, Zhao S (2005) Catal Today 104(1):18. doi:10.1016/j.cattod.2005.03.034

    Article  CAS  Google Scholar 

  5. Costa LOO, Vasconcelos SMR, Pinto AL, Silva AM, Mattos LV, Noronha FB, Borges LEP (2008) J Mater Sci 43(2):440. doi:10.1007/s10853-007-1982-2

    Article  CAS  Google Scholar 

  6. Colussi S, Trovarelli A, Vesselli E, Baraldi A, Comelli G, Groppi G, Llorca J (2010) Appl Catal A Gen 390(1–2):1. doi:10.1016/j.apcata.2010.09.033

    Article  CAS  Google Scholar 

  7. Bera P, Hegde MS (2010) J Indian Inst Sci 90(2):299

    CAS  Google Scholar 

  8. Jen HW, Graham GW, Chun W, McCabe RW, Cuif JP, Deutsch SE, Touret O (1999) Catal Today 50(2):309. doi:10.1016/S0920-5861(98)00512-4

    Article  CAS  Google Scholar 

  9. Hegde MS, Madras G, Patil KC (2009) Acc Chem Res 42(6):704. doi:10.1021/ar800209s

    Article  CAS  Google Scholar 

  10. Liu YY, Hayakawa T, Ishii T, Kumagai M, Yasuda H, Suzuki K, Hamakawa S, Murata K (2001) Appl Catal A Gen 210(1–2):301. doi:10.1016/S0926-860X(00)00817-6

    Article  CAS  Google Scholar 

  11. Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18(14):3249. doi:10.1021/cm060267i

    Article  CAS  Google Scholar 

  12. Roy S, Marimuthu A, Hegde MS, Madras G (2007) Appl Catal B Environ 71(1-2):23. doi:10.1016/j.apcatb.2006.08.005

    Article  CAS  Google Scholar 

  13. Wang B, Weng DA, Wu XD, Fan J (2010) Catal Today 153(3–4):111. doi:10.1016/j.cattod.2010.02.013

    Article  CAS  Google Scholar 

  14. Wang B, Weng DA, Wu XD, Ran R (2011) Appl Surf Sci 257(9):3878. doi:10.1016/j.apsusc.2010.11.083

    Article  CAS  Google Scholar 

  15. Zhang F, Jin Q, Chan S-W (2004) J Appl Phys 95(8):4319. doi:10.1063/1.1667251

    Article  CAS  Google Scholar 

  16. Shen WJ, Kobayashi A, Ichihashi Y, Matsumura Y, Haruta M (2001) Catal Lett 73(2–4):161. doi:10.1023/A:1016670505059

    Article  CAS  Google Scholar 

  17. Cheary RW, Coelho AA (1997) Program XFit. In: CCP14 Powder Diffraction Library, Engineering and Physical Sciences Research Council, Daresbury Laboratory, Warrington. http://www.ccp14.ac.uk/tutorial/xfit-95/xfit.htm. Accessed 29 July 2009

  18. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice-Hall, Upper Saddle River

    Google Scholar 

  19. Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum Press, New York

    Google Scholar 

  20. Lide DR (ed) (2009–2010) CRC handbook of chemistry and physics, 90th edn. CRC Press, Cleveland

  21. International centre for diffraction data (2007) PDF-4. International Centre for Diffraction Data, Newton Square

  22. Taylor JR (1982) An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, Mill Valley

    Google Scholar 

  23. Hassanzadeh-Tabrizi SA, Mazaheri M, Aminzare M, Sadrnezhaad SK (2010) J Alloy Compd 491:499. doi:10.1016/j.jallcom.2009.10.243

    Article  CAS  Google Scholar 

  24. Coster M, Arnould X, Chermant JL, Chermant L, Chartier T (2005) J Eur Ceram Soc 25:3427. doi:10.1016/j.jeurceramsoc.2004.09.003

    Article  CAS  Google Scholar 

  25. El-Khozondar R, El-Khozondar H, Gottstein G, Rollet A (2006) Egypt J Solids 29(1):35

    Google Scholar 

  26. Chen P-L, Chen I-W (1996) J Am Ceram Soc 79:1793. doi:10.1111/j.1151-2916.1996.tb07997.x

    Article  CAS  Google Scholar 

  27. Li JG, Ikegami T, Mori T (2004) Acta Mater 52(8):2221. doi:10.1016/j.actamat.2004.01.014

    Article  CAS  Google Scholar 

  28. Origin. Ver. 8.0988 (1991–2009) Origin Lab Corporation, Northampton, MA

  29. Bischoff JL (1968) J Geophys Res 73(10):3315

    Article  CAS  Google Scholar 

  30. Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Appl Phys Lett 80(1):127. doi:10.1063/1.1430502

    Article  CAS  Google Scholar 

  31. Perebeinos V, Chan S-W, Zhang F (2002) Solid State Commun 123(6–7):295

    Article  CAS  Google Scholar 

  32. Zhang F, Wang P, Koberstein J, Khalid S, Chan S-W (2004) Surf Sci 563(1–3):74. doi:10.1016/j.susc.2004.05.138

    Article  CAS  Google Scholar 

  33. Lide DR (ed) (2011) CRC handbook of chemistry and physics, Electronic edn. CRC Press, Boca Raton

  34. Keramidas VG, White WB (1973) J Chem Phys 59(1):1561. doi:10.1063/1.1680227

    Article  Google Scholar 

  35. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76(4):2435

    Article  CAS  Google Scholar 

  36. Zhang F, Chen C-H, Hanson JC, Robinson RD, Herman IP, Chan S-W (2006) J Am Ceram Soc 89(3):1028. doi:10.1111/j.1551-2916.2005.00788.x

    Article  CAS  Google Scholar 

  37. Davydov VY, Goncharuk IN, Baidakova MV, Smirnov AN, Subashiev AV, Aderhold J, Stemmer J, Rotter T, Uffmann D, Semchinova O (1999) Mater Sci Eng B Solid State Mater Adv Technol 59(1–3):222. doi:10.1016/S0921-5107(98)00370-5

    Google Scholar 

  38. Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys Rev B 64(24):245407. doi:10.1103/PhysRevB.64.245407

    Article  Google Scholar 

  39. McBride JR, Hass KC, Weber WH (1991) Phys Rev B 44(10):5016. doi:10.1103/PhysRevB.44.5016

    Article  CAS  Google Scholar 

  40. Rousseau DL, Bauman RP, Porto SPS (1981) J Raman Spectrosc 10:253

    Article  CAS  Google Scholar 

  41. Weber WH, Baird RJ, Graham GW (1988) J Raman Spectrosc 19(4):239

    Article  CAS  Google Scholar 

  42. Qi X, Flytzani-Stephanopoulos M (2004) Ind Eng Chem Res 43(12):3055. doi:10.1021/ie0306170

    Article  CAS  Google Scholar 

  43. Groza JR, Gibeling JC (1993) Mater Sci Eng A A171(1–2):115. doi:10.1016/0921-5093(93)90398-X

    CAS  Google Scholar 

  44. Knauth P, Schwitzgebel G, Tschope A, Villain S (1998) J Solid State Chem 140(2):295. doi:10.1006/jssc.1998.7890

    Article  CAS  Google Scholar 

  45. Tschope A (2005) J Electroceram 14:5. doi:10.1007/s10832-005-6580-6

    Article  Google Scholar 

  46. Kim D-J (1989) J Am Ceram Soc 72(8):1415. doi:10.1111/j.1151-2916.1989.tb07663.x

    Article  CAS  Google Scholar 

  47. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ion Diffus React 129(1–4):63. doi:10.1016/S0167-2738(99)00318-5

    Article  CAS  Google Scholar 

  48. Shannon RD (1976) Acta Crystallogr A32:751. doi:10.1107/S0567739476001551

    CAS  Google Scholar 

  49. Zhang TS, Ma J, Kong LB, Zeng ZQ, Hing P, Kilner JA (2003) Mater Sci Eng B Solid State Mater Adv Technol 103(2):177. doi:10.1016/s0921-5107(03)00198-3

    Google Scholar 

  50. Zhang TS, Hing P, Huang HT, Kilner J (2002) Mater Lett 57(2):507

    Article  CAS  Google Scholar 

  51. Zhang TS, Hing P, Huang HT, Kilner J (2002) J Eur Ceram Soc 22(1):27

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of BASF, the Department of Energy under Award Number DOE DE-FG02-05ER15730, and the Materials Research Science and Engineering Center (MRSEC) Program of the National Science Foundation (# DMR-0213574). Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Wai Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Raitano, J.M., He, G. et al. Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J Mater Sci 47, 299–307 (2012). https://doi.org/10.1007/s10853-011-5798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5798-8

Keywords

Navigation